[1] L. Ding, H. He, T. Song, Vortex-induced vibration and heat dissipation of multiple cylinders under opposed thermal buoyancy, Ocean Engineering, 270 (2023) 113669.
[2] A.A. Mosaferi, M. Esmaeili, A.H. Rabiee, Effect of aligned magnetic field on the 2DOF VIV suppression and convective heat transfer characteristics of a circular cylinder, International Communications in Heat and Mass Transfer, 130 (2022) 105807.
[3] M.A. Khan, S. Masood, S.F. Anwer, S.A. Khan, M.R. Arif, Vortex induced vibration for mixed convective flow past a square cylinder, International Journal of Heat and Mass Transfer, 202 (2023) 123722.
[4] M. Asif, R. Chaturvedi, A. Dhiman, Heat transfer enhancement from inline and staggered arrays of cylinders in a heat exchanger using alumina–water nanofluid, Journal of Thermal Science and Engineering Applications, 13(4) (2021) 041025.
[5] S.M. Ibrahim, A. Abdelmaksoud, W. Helal, Heat transfer characteristics for multi-silicon ingots irradiation in a typical research reactor, International Journal of Thermofluids, 20 (2023) 100411.
[6] D. Yu, D. Zhang, L. Wu, X. Kong, Q. Yue, Analysis of the influence of convection heat transfer in circular tubes on ships in a polar environment, Atmosphere, 13(2) (2022) 149.
[7] A.H. Rabiee, S.D. Farahani, Effect of synthetic jet on VIV and heat transfer behavior of heated sprung circular cylinder embedded in a channel, International Communications in Heat and Mass Transfer, 119 (2020) 104977.
[8] T.L. Frölicher, C. Laufkötter, Emerging risks from marine heat waves, Nature communications, 9(1) (2018) 650.
[9] Y.M. Seo, K. Luo, M.Y. Ha, Y.G. Park, Direct numerical simulation and artificial neural network modeling of heat transfer characteristics on natural convection with a sinusoidal cylinder in a long rectangular enclosure, International Journal of Heat and Mass Transfer, 152 (2020) 119564.
[10] S. Cai, Z. Wang, S. Wang, P. Perdikaris, G.E. Karniadakis, Physics-informed neural networks for heat transfer problems, Journal of Heat Transfer, 143(6) (2021) 060801.
[11] M. Sarmeili, H.R. Ashtiani, A. Rabiee, Nonlinear energy sinks with nonlinear control strategies in fluid-structure simulations framework for passive and active FIV control of sprung cylinders, Communications in Nonlinear Science and Numerical Simulation, 97 (2021) 105725.
[12] O.I. Abiodun, A. Jantan, A.E. Omolara, K.V. Dada, A.M. Umar, O.U. Linus, H. Arshad, A.A. Kazaure, U. Gana, M.U. Kiru, Comprehensive review of artificial neural network applications to pattern recognition, IEEE access, 7 (2019) 158820-158846.
[13] R. Kumar, R. Nadda, S. Kumar, A. Razak, M. Sharifpur, H.S. Aybar, C.A. Saleel, A. Afzal, Influence of artificial roughness parametric variation on thermal performance of solar thermal collector: An experimental study, response surface analysis and ANN modelling, Sustainable Energy Technologies and Assessments, 52 (2022) 102047.
[14] J. Solís-Pérez, J. Hernández, A. Parrales, J. Gómez-Aguilar, A. Huicochea, Artificial neural networks with conformable transfer function for improving the performance in thermal and environmental processes, Neural Networks, 152 (2022) 44-56.
[15] E. Ayli, E. Kocak, Prediction of the heat transfer performance of twisted tape inserts by using artificial neural networks, Journal of Mechanical Science and Technology, 36(9) (2022) 4849-4858.
[16] K. Tao, J. Zhu, Z. Cheng, D. Li, Artificial neural network analysis of the Nusselt number and friction factor of hydrocarbon fuel under supercritical pressure, Propulsion and Power Research, 11(3) (2022) 325-336.
[17] K. Kim, H. Lee, M. Kang, G. Lee, K. Jung, C.R. Kharangate, M. Asheghi, K.E. Goodson, H. Lee, A machine learning approach for predicting heat transfer characteristics in micro-pin fin heat sinks, International Journal of Heat and Mass Transfer, 194 (2022) 123087.
[18] N. Celik, B. Tasar, S. Kapan, V. Tanyildizi, Performance optimization of a heat exchanger with coiled-wire turbulator insert by using various machine learning methods, International Journal of Thermal Sciences, 192 (2023) 108439.
[19] F.Z. Benouis, Y.O. Amer, M. Arıcı, S. Meziane, Designing and optimizing a novel heat sink for the enhancement of hydrothermal performances: Modelling and analysis using artificial neural network, Engineering Analysis with Boundary Elements, 155 (2023) 766-778.
[20] Z. Li, Z. Feng, Q. Zhang, J. Zhou, J. Zhang, F. Guo, Thermal-hydraulic performance and multi-objective optimization using ANN and GA in microchannels with double delta-winglet vortex generators, International Journal of Thermal Sciences, 193 (2023) 108489.
[21] C. Zhai, Y. Sui, W. Wu, Machine learning-assisted correlations of heat/mass transfer and pressure drop of microchannel membrane-based desorber/absorber for compact absorption cycles, International Journal of Heat and Mass Transfer, 214 (2023) 124431.
[22] L.S. Sundar, K.V.C. Mouli, Experimental analysis and Levenberg-Marquardt artificial neural network predictions of heat transfer, friction factor, and efficiency of thermosyphon flat plate collector with MgO/water nanofluids, International Journal of Thermal Sciences, 194 (2023) 108555.
[23] Z. Han, J. Guo, J. Chen, X. Huai, Experimental and numerical investigations on thermal-hydraulic characteristics of supercritical CO2 flows in printed circuit heat exchangers, International Journal of Thermal Sciences, 194 (2023) 108573.
[24] A.T. Vu, S. Gulati, P.-A. Vogel, T. Grunwald, T. Bergs, Machine learning-based predictive modeling of contact heat transfer, International Journal of Heat and Mass Transfer, 174 (2021) 121300.
[25] G. Krishnayatra, S. Tokas, R. Kumar, Numerical heat transfer analysis & predicting thermal performance of fins for a novel heat exchanger using machine learning, Case Studies in Thermal Engineering, 21 (2020) 100706.
[26] L. Zhou, D. Garg, Y. Qiu, S.-M. Kim, I. Mudawar, C.R. Kharangate, Machine learning algorithms to predict flow condensation heat transfer coefficient in mini/micro-channel utilizing universal data, International Journal of Heat and Mass Transfer, 162 (2020) 120351.
[27] E. Kocak, E. Aylı, H. Turkoglu, A comparative study of multiple regression and machine learning techniques for prediction of nanofluid heat transfer, Journal of Thermal Science and Engineering Applications, 14(6) (2022) 061002.
[28] F. Nie, H. Wang, Y. Zhao, Q. Song, S. Yan, M. Gong, A universal correlation for flow condensation heat transfer in horizontal tubes based on machine learning, International Journal of Thermal Sciences, 184 (2023) 107994.
[29] Y. Qiu, T. Vo, D. Garg, H. Lee, C.R. Kharangate, A systematic approach to optimization of ANN model parameters to predict flow boiling heat transfer coefficient in mini/micro-channel heatsinks, International Journal of Heat and Mass Transfer, 202 (2023) 123728.
[30] S. Bhattacharya, M.K. Verma, A. Bhattacharya, Predictions of Reynolds and Nusselt numbers in turbulent convection using machine-learning models, Physics of Fluids, 34(2) (2022).
[31] B. Keshavarzian, J.M.N. Abad, M. Mir, M. Keshavarzian, R. Alizadeh, The optimization of natural frequency on the cross flow-induced vibration and heat transfer in a circular cylinder with LSTM deep learning model, Journal of the Taiwan Institute of Chemical Engineers, (2023) 104969.
[32] F. Ren, F. Zhang, Y. Zhu, Z. Wang, F. Zhao, Enhancing heat transfer from a circular cylinder undergoing vortex induced vibration based on reinforcement learning, Applied Thermal Engineering, 236 (2024) 121919.
[33] L.R. Medsker, L. Jain, Recurrent neural networks, Design and Applications, 5(64-67) (2001).
[34] A. Graves, A. Graves, Long short-term memory, Supervised sequence labelling with recurrent neural networks, (2012) 37-45.
[35] J. Kennedy, R. Eberhart, Particle swarm optimization (PSO), in: Proc. IEEE International Conference on Neural Networks, Perth, Australia, 1995, pp. 1942-1948.
[36] E. Guilmineau, P. Queutey, Numerical simulation of vortex-induced vibration of a circular cylinder with low mass-damping in a turbulent flow, Journal of fluids and structures, 19(4) (2004) 449-466.
[37] X. Han, W. Lin, D. Wang, A. Qiu, Z. Feng, Y. Tang, J. Wu, Numerical simulation of super upper branch of a cylindrical structure with a low mass ratio, Ocean Engineering, 168 (2018) 108-120.
[38] X. Han, Y. Tang, Z. Feng, Z. Meng, A. Qiu, W. Lin, J. Wu, Vortex-Induced Vibration of a Marine Riser: Numerical Simulation and Mechanism Understanding, in: New Innovations in Engineering Education and Naval Engineering, IntechOpen, 2018.
[39] N.B. Khan, Z. Ibrahim, M.I. Khan, T. Hayat, M.F. Javed, VIV study of an elastically mounted cylinder having low mass-damping ratio using RANS model, International Journal of Heat and Mass Transfer, 121 (2018) 309-314.
[40] W. Li, J. Li, S. Liu, Numerical simulation of vortex-induced vibration of a circular cylinder at low mass and damping with different turbulent models, in: Oceans 2014-Taipei, IEEE, 2014, pp. 1-7.
[41] Z. Pan, W. Cui, Q. Miao, Numerical simulation of vortex-induced vibration of a circular cylinder at low mass-damping using RANS code, Journal of Fluids and Structures, 23(1) (2007) 23-37.
[42] J.B. Wanderley, G.H. Souza, S.H. Sphaier, C. Levi, Vortex-induced vibration of an elastically mounted circular cylinder using an upwind TVD two-dimensional numerical scheme, Ocean Engineering, 35(14-15) (2008) 1533-1544.
[43] M. Esmaeili, A.H. Rabiee, Active feedback VIV control of sprung circular cylinder using TDE-iPID control strategy at moderate Reynolds numbers, International Journal of Mechanical Sciences, 202 (2021) 106515.
[44] M. Esmaeili, A.H. Rabiee, Heat transfer characteristics in turbulent FIV of three circular cylinders with different isosceles-triangle arrangements, International Journal of Numerical Methods for Heat & Fluid Flow, 33(7) (2023) 2455-2477.
[45] A.H. Rabiee, M. Esmaeili, Effect of the flow incidence angle on the VIV-based energy harvesting from triple oscillating cylinders, Sustainable Energy Technologies and Assessments, 57 (2023) 103312.
[46] J. Scholten, D. Murray, Unsteady heat transfer and velocity of a cylinder in cross flow—I. Low freestream turbulence, International journal of heat and mass transfer, 41(10) (1998) 1139-1148.