[1] N. Vyas, K. Manmi, Q. Wang, A.J. Jadhav, M. Barigou, R.L. Sammons, S.A. Kuehne, A.D. Walmsley, Which parameters affect biofilm removal with acoustic cavitation? A review, Ultrasound in medicine & biology, 45(5) (2019) 1044-1055.
[2] E. Brujan, G. Keen, A. Vogel, J. Blake, The final stage of the collapse of a cavitation bubble close to a rigid boundary, Physics of fluids, 14(1) (2002) 85-92.
[3] M. Ashokkumar, The characterization of acoustic cavitation bubbles–an overview, Ultrasonics sonochemistry, 18(4) (2011) 864-872.
[4] Z. Izadifar, P. Babyn, D. Chapman, Ultrasound cavitation/microbubble detection and medical applications, Journal of Medical and Biological Engineering, 39(3) (2019) 259-276.
[5] C. Coussios, C. Farny, G. Ter Haar, R. Roy, Role of acoustic cavitation in the delivery and monitoring of cancer treatment by high-intensity focused ultrasound (HIFU), International journal of hyperthermia, 23(2) (2007) 105-120.
[6] B. Xie, T.J. Halter, B.M. Borah, G.H. Nancollas, Aggregation of calcium phosphate and oxalate phases in the formation of renal stones, Crystal growth & design, 15(1) (2015) 204-211.
[7] W.G. Pitt, G.A. Husseini, B.J. Staples, Ultrasonic drug delivery–a general review, Expert Opinion on Drug Delivery, 1(1) (2004) 37-56.
[8] J. Blake, B. Taib, G. Doherty, Transient cavities near boundaries. Part 1. Rigid boundary, Journal of Fluid Mechanics, 170 (1986) 479-497.
[9] T. Sakka, S. Iwanaga, Y.H. Ogata, A. Matsunawa, T. Takemoto, Laser ablation at solid–liquid interfaces: An approach from optical emission spectra, The Journal of Chemical Physics, 112(19) (2000) 8645-8653.
[10] V. Lazic, F. Colao, R. Fantoni, V. Spizzicchino, Recognition of archeological materials underwater by laser induced breakdown spectroscopy, Spectrochimica Acta Part B: Atomic Spectroscopy, 60(7-8) (2005) 1014-1024.
[11] T. Sakka, A. Tamura, T. Nakajima, K. Fukami, Y.H. Ogata, Synergetic effects of double laser pulses for the formation of mild plasma in water: toward non-gated underwater laser-induced breakdown spectroscopy, The Journal of chemical physics, 136(17) (2012) 174201.
[12] S. Wang, Q. Wang, D. Leppinen, A. Zhang, Y. Liu, Acoustic bubble dynamics in a microvessel surrounded by elastic material, Physics of Fluids, 30(1) (2018) 012104.
[13] B. Dollet, P. Marmottant, V. Garbin, Bubble dynamics in soft and biological matter, Annual Review of Fluid Mechanics, 51 (2019) 331-355.
[14] J.H. Bezer, H. Koruk, C.J. Rowlands, J.J. Choi, Elastic deformation of soft tissue-mimicking materials using a single microbubble and acoustic radiation force, Ultrasound in Medicine & Biology, 46(12) (2020) 3327-3338.
[15] H. Wu, C. Zhou, H. Yu, D. Li, Dynamics Characterization of the Acoustically Driven Single Microbubble near the Rigid and Elastic Wall, Instruments and Experimental Techniques, 63(4) (2020) 583-590.
[16] Q. Yu, Z. Xu, J. Zhao, M. Zhang, X. Ma, PIV-Based Acoustic Pressure Measurements of a Single Bubble near the Elastic Boundary, Micromachines, 11(7) (2020) 637.
[17] E. Badfar, M.A. Ardestani, M.T. Beheshti, Robust nonsingular terminal sliding mode control of radius for a bubble between two elastic walls, Journal of Control, Automation and Electrical Systems, 31(2) (2020) 283-293.
[18] J. Liu, W. Xiao, X. Yao, X. Huang, Dynamics of a bubble in a liquid fully confined by an elastic boundary, Physics of Fluids, 33(6) (2021) 063303.
[19] S. Cao, G. Wang, O. Coutier-Delgosha, K. Wang, Shock-induced bubble collapse near solid materials: Effect of acoustic impedance, Journal of Fluid Mechanics, 907 (2021) A17.
[20] S.R. Gonzalez-Avila, F. Denner, C.-D. Ohl, The acoustic pressure generated by the cavitation bubble expansion and collapse near a rigid wall, Physics of Fluids, 33(3) (2021).
[21] X. Lu, C. Chen, K. Dong, Z. Li, J. Chen, An equivalent method of jet impact loading from collapsing near-wall acoustic bubbles: A preliminary study, Ultrasonics Sonochemistry, 79 (2021) 105760.
[22] H. Wu, C. Zhou, Z. Pu, X. Lai, H. Yu, D. Li, Experimental investigation on the effects of the standoff distance and the initial radius on the dynamics of a single bubble near a rigid wall in an ultrasonic field, Ultrasonics sonochemistry, 68 (2020) 105197.
[23] B. Boyd, S. Becker, Numerical modeling of the acoustically driven growth and collapse of a cavitation bubble near a wall, Physics of Fluids, 31(3) (2019).
[24] T. Lyubimova, K. Rybkin, O. Fattalov, M. Kuchinskiy, L. Filippov, Experimental study of temporal dynamics of cavitation bubbles selectively attached to the solid surfaces of different hydrophobicity under the action of ultrasound, Ultrasonics, 117 (2021) 106516.
[25] T. Li, A.-M. Zhang, S.-P. Wang, S. Li, W.-T. Liu, Bubble interactions and bursting behaviors near a free surface, Physics of Fluids, 31(4) (2019) 042104.
[26] H.C. Pumphrey, L. Crum, The acoustic field of an oscillating bubble near a free surface, The Journal of the Acoustical Society of America, 84(S1) (1988) S202-S202.
[27] S. Ohl, E. Klaseboer, B. Khoo, The dynamics of a non-equilibrium bubble near bio-materials, Physics in Medicine & Biology, 54(20) (2009) 6313.
[28] P. Koukouvinis, G. Strotos, Q. Zeng, S.R. Gonzalez-Avila, A. Theodorakakos, M. Gavaises, C.-D. Ohl, Parametric investigations of the induced shear stress by a laser-generated bubble, Langmuir, 34(22) (2018) 6428-6442.
[29] A. Osterman, M. Dular, B. Sirok, Numerical simulation of a near-wall bubble collapse in an ultrasonic field, Journal of Fluid Science and Technology, 4(1) (2009) 210-221.
[30] E.A. Brujan, G.S. Keen, A. Vogel, J.R. Blake, The final stage of the collapse of acavitation bubble close to a rigid boundary, J. Phys. Fluids, 14 (2002) 85–92.
[31] J. Luo, W. Xu, J. Deng, Y. Zhai, Q. Zhang, Experimental study on the impact characteristics of cavitation bubble collapse on a wall, Water, 10(9) (2018) 1262.
[32] O. Supponen, D. Obreschkow, M. Farhat, Rebounds of deformed cavitation bubbles, Physical Review Fluids, 3(10) (2018) 103604.
[33] C. Lechner, W. Lauterborn, M. Koch, R. Mettin, Jet formation from bubbles near a solid boundary in a compressible liquid: Numerical study of distance dependence, Physical Review Fluids, 5(9) (2020) 093604.
[34] Y. Liu, Y. Peng, Study on the collapse process of cavitation bubbles near the concave wall by lattice Boltzmann method pseudo-potential model, Energies, 13(17) (2020) 4398.
[35] M. Koch, C. Lechner, F. Reuter, K. Kohler, R. Mettin, W. Lauterborn, Numerical modeling of laser generated cavitation bubbles with the finite volume and volume of fluid method, using OpenFOAM, J. Comput. Fluids, 126 (2016) 71-90.
[36] T. Li, S. Wang, S. Li, A. M. Zhang, Numerical investigation of an underwater explosion bubble based on FVM and VOF, J. Appl. Ocean Res., 74 (2018) 49-58.
[37] E. Berberović, N.P. van Hinsberg, S. Jakirlić, I.V. Roisman, C. Tropea, Drop impact onto a liquid layer of finite thickness: Dynamics of the cavity evolution, Physical Review E—Statistical, Nonlinear, and Soft Matter Physics, 79(3) (2009) 036306.
[38] R. Maddahian, M.J. Cervantes, D.M. Bucur, Numerical investigation of entrapped air pockets on pressure surges and flow structure in a pipe, Journal of Hydraulic Research, 58(2) (2020) 218-230.
[39] H.G. Weller, A new approach to VOF-based interface capturing methods for incompressible and compressible flow, OpenCFD Ltd., Report TR/HGW, 4 (2008) 35.
[40] B. Lafaurie, C. Nardone, R. Scardovelli, S. Zaleski, G. Zanetti, Modelling merging and fragmentation in multiphase flows with surfer, J. Comp. Phys., 113 (1994) 134 – 147.
[41] J.D. Anderson, Governing equations of fluid dynamics, Computational fluid dynamics: an introduction, (1992) 15-51.
[42] J. Yin, Y. Zhang, J. Zhu, Y. Zhang, S. Li, On the thermodynamic behaviors and interactions between bubble pairs: A numerical approach, Ultrasonics Sonochemistry, 70 (2021) 105297.
[43] B. Shin, Y. Iwata, T. Ikohagi, Numerical simulation of unsteady cavitating flows using a homogenous equilibrium model, Computational Mechanics, 30 (2003) 388-395.
[44] T. Yamamoto, S.-i. Hatanaka, S.V. Komarov, Fragmentation of cavitation bubble in ultrasound field under small pressure amplitude, Ultrasonics sonochemistry, 58 (2019) 104684.
[45] I. Akhatov, O. Lindau, A. Topolnikov, R. Mettin, N. Vakhitova, W. Lauterborn, Collapse and rebound of a laser-induced cavitation bubble, Physics of Fluids, 13(10) (2001) 2805-2819.
[46] H.T. Chen, R. Collins, Shock wave propagation past an ocean surface, J. Comput. Phys., 7 (1971) 89-101.
[47] P. Gregorčič, R. Petkovšek, J. Možina, Investigation of a cavitation bubble between a rigid boundary and a free surface, Journal of applied physics, 102(9) (2007).
[48] D. Kröninger, K. Köhler, T. Kurz, W. Lauterborn, Particle tracking velocimetry of the flow field around a collapsing cavitation bubble, Experiments in fluids, 48(3) (2010) 395-408.
[49] K. Kerboua, O. Hamdaoui, Numerical investigation of the effect of dual frequency sonication on stable bubble dynamics, Ultrasonics Sonochemistry, 49 (2018) 325-332.
[50] B. Han, K. Köhler, K. Jungnickel, R. Mettin, W. Lauterborn, A. Vogel, Dynamics of laser-induced bubble pairs, Journal of Fluid Mechanics, 771 (2015) 706-742.
[51] I.B. Celik, U. Ghia, P.J. Roache, C.J. Freitas, Procedure for estimation and reporting of uncertainty due to discretization in CFD applications, Journal of fluids Engineering-Transactions of the ASME, 130(7) (2008).
[52] J. Lee, G. Son, Numerical simulation of bubble resonance in an acoustic field, Journal of Mechanical Science and Technology, 32 (2018) 1625-1632.