مطالعه عددی دینامیک رشد و فروپاشی حباب در نزدیکی دیواره صلب

نوع مقاله : مقاله پژوهشی

نویسندگان

دانشکده مهندسی مکانیک، دانشگاه تربیت مدرس، تهران، ایران

چکیده

با توجه به نقش مهم پدیده شکست حباب و انرژی آزادشده از آن در زمینه‌‌های مختلف پزشکی و مهندسی، در این پژوهش به بررسی دینامیک رشد و فروپاشی حباب در نزدیکی دیواره صلب پرداخته‌شده است. به‌‌منظور محاسبه تغییرات فشار، دما و چگالی از روش حجم سیال اصلاح‌شده در کد متن‌باز اپن فوم  استفاده‌شده است. بدین منظور، حلگر اینترفوم تراکم‌پذیر بهبود‌ داده‌‌شده و نتایج حاصل از شبیه‌سازی با استفاده از مسئله حباب پایدار و مسئله جفت حباب صحت‌سنجی شده است. نتایج نشان می‌دهد عدد بی‌‌بعد گاما بیشترین تأثیر را در رشد و فروپاشی حباب در نزدیکی دیواره دارد. در بازه‌ موردمطالعه عدد بی‌بعد گاما، با افزایش 60 درصدی آن، بیشینه تنش برشی روی دیواره 37 درصد کاهش و مقدار بیشینه دما مطلق داخل حباب 12 درصد افزایش می‌یابد. همچنین، با افزایش عدد بی‌بعد گاما، منطقه تأثیریافته از برخورد جت ناشی از شکست حباب بیشتر می‌شود. به‌علاوه، پارامتر فشار اولیه حباب، بیشترین تأثیر را روی بیشینه دما داخل حباب دارد. در بازه فشار اولیه داخل حباب در نظر گرفته‌شده در پژوهش حاضر، با افزایش 50 درصدی فشار اولیه حباب، بیشینه دما حباب 6 درصد کاهش می‌یابد؛ اما مقادیر دیگر پارامتر‌های موردمطالعه ازجمله تنش برشی کمتر از یک درصد دستخوش تغییرات خواهد شد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Numerical study of bubble growth and collapse dynamics, near the rigid wall

نویسندگان [English]

  • Mohammadreza Najafigamasaei
  • sajad Khodadadi
  • Reza Maddahian
Faculty of Mechanical Engineering, Tarbiat Modares University
چکیده [English]

In this study, the dynamics of bubble growth and collapse near a rigid wall is investigated using the modified volume of fluid method and the improved compressible interfoam solver in the OpenFoam open-source code. The research results indicate that the dimensionless gamma number has the most significant impact on the growth and collapse of the bubble near the wall. This study examined two gamma numbers 0.8 and 1.3. It was found that with a 60% increase in the gamma number, the maximum shear stress on the wall decreased by 37%, while the maximum absolute temperature inside the bubble increased by 12%. Additionally, as the gamma number increases, the area affected by the jet impact due to the bubble collapse increases. Within the scope of the present research, the initial pressure parameter of the bubble has the most significant impact on the maximum temperature inside the bubble. In the range of considered initial pressures, a 50% increase in the initial pressure results in a 6% decrease in the maximum temperature of the bubble. However, the values of other studied parameters, such as shear stress, change by less than one percent.

کلیدواژه‌ها [English]

  • Cavitation
  • Microbubble
  • Bubble Collapse
  • Microjet
  • Rigid Wall
[1] N. Vyas, K. Manmi, Q. Wang, A.J. Jadhav, M. Barigou, R.L. Sammons, S.A. Kuehne, A.D. Walmsley, Which parameters affect biofilm removal with acoustic cavitation? A review, Ultrasound in medicine & biology, 45(5) (2019) 1044-1055.
[2] E. Brujan, G. Keen, A. Vogel, J. Blake, The final stage of the collapse of a cavitation bubble close to a rigid boundary, Physics of fluids, 14(1) (2002) 85-92.
[3] M. Ashokkumar, The characterization of acoustic cavitation bubbles–an overview, Ultrasonics sonochemistry, 18(4) (2011) 864-872.
[4] Z. Izadifar, P. Babyn, D. Chapman, Ultrasound cavitation/microbubble detection and medical applications, Journal of Medical and Biological Engineering, 39(3) (2019) 259-276.
[5] C. Coussios, C. Farny, G. Ter Haar, R. Roy, Role of acoustic cavitation in the delivery and monitoring of cancer treatment by high-intensity focused ultrasound (HIFU), International journal of hyperthermia, 23(2) (2007) 105-120.
[6] B. Xie, T.J. Halter, B.M. Borah, G.H. Nancollas, Aggregation of calcium phosphate and oxalate phases in the formation of renal stones, Crystal growth & design, 15(1) (2015) 204-211.
[7] W.G. Pitt, G.A. Husseini, B.J. Staples, Ultrasonic drug delivery–a general review, Expert Opinion on Drug Delivery, 1(1) (2004) 37-56.
[8] J. Blake, B. Taib, G. Doherty, Transient cavities near boundaries. Part 1. Rigid boundary, Journal of Fluid Mechanics, 170 (1986) 479-497.
[9] T. Sakka, S. Iwanaga, Y.H. Ogata, A. Matsunawa, T. Takemoto, Laser ablation at solid–liquid interfaces: An approach from optical emission spectra, The Journal of Chemical Physics, 112(19) (2000) 8645-8653.
[10] V. Lazic, F. Colao, R. Fantoni, V. Spizzicchino, Recognition of archeological materials underwater by laser induced breakdown spectroscopy, Spectrochimica Acta Part B: Atomic Spectroscopy, 60(7-8) (2005) 1014-1024.
[11] T. Sakka, A. Tamura, T. Nakajima, K. Fukami, Y.H. Ogata, Synergetic effects of double laser pulses for the formation of mild plasma in water: toward non-gated underwater laser-induced breakdown spectroscopy, The Journal of chemical physics, 136(17) (2012) 174201.
[12] S. Wang, Q. Wang, D. Leppinen, A. Zhang, Y. Liu, Acoustic bubble dynamics in a microvessel surrounded by elastic material, Physics of Fluids, 30(1) (2018) 012104.
[13] B. Dollet, P. Marmottant, V. Garbin, Bubble dynamics in soft and biological matter, Annual Review of Fluid Mechanics, 51 (2019) 331-355.
[14] J.H. Bezer, H. Koruk, C.J. Rowlands, J.J. Choi, Elastic deformation of soft tissue-mimicking materials using a single microbubble and acoustic radiation force, Ultrasound in Medicine & Biology, 46(12) (2020) 3327-3338.
[15] H. Wu, C. Zhou, H. Yu, D. Li, Dynamics Characterization of the Acoustically Driven Single Microbubble near the Rigid and Elastic Wall, Instruments and Experimental Techniques, 63(4) (2020) 583-590.
[16] Q. Yu, Z. Xu, J. Zhao, M. Zhang, X. Ma, PIV-Based Acoustic Pressure Measurements of a Single Bubble near the Elastic Boundary, Micromachines, 11(7) (2020) 637.
[17] E. Badfar, M.A. Ardestani, M.T. Beheshti, Robust nonsingular terminal sliding mode control of radius for a bubble between two elastic walls, Journal of Control, Automation and Electrical Systems, 31(2) (2020) 283-293.
[18] J. Liu, W. Xiao, X. Yao, X. Huang, Dynamics of a bubble in a liquid fully confined by an elastic boundary, Physics of Fluids, 33(6) (2021) 063303.
[19] S. Cao, G. Wang, O. Coutier-Delgosha, K. Wang, Shock-induced bubble collapse near solid materials: Effect of acoustic impedance, Journal of Fluid Mechanics, 907 (2021) A17.
[20] S.R. Gonzalez-Avila, F. Denner, C.-D. Ohl, The acoustic pressure generated by the cavitation bubble expansion and collapse near a rigid wall, Physics of Fluids, 33(3) (2021).
[21] X. Lu, C. Chen, K. Dong, Z. Li, J. Chen, An equivalent method of jet impact loading from collapsing near-wall acoustic bubbles: A preliminary study, Ultrasonics Sonochemistry, 79 (2021) 105760.
[22] H. Wu, C. Zhou, Z. Pu, X. Lai, H. Yu, D. Li, Experimental investigation on the effects of the standoff distance and the initial radius on the dynamics of a single bubble near a rigid wall in an ultrasonic field, Ultrasonics sonochemistry, 68 (2020) 105197.
[23] B. Boyd, S. Becker, Numerical modeling of the acoustically driven growth and collapse of a cavitation bubble near a wall, Physics of Fluids, 31(3) (2019).
[24] T. Lyubimova, K. Rybkin, O. Fattalov, M. Kuchinskiy, L. Filippov, Experimental study of temporal dynamics of cavitation bubbles selectively attached to the solid surfaces of different hydrophobicity under the action of ultrasound, Ultrasonics, 117 (2021) 106516.
[25] T. Li, A.-M. Zhang, S.-P. Wang, S. Li, W.-T. Liu, Bubble interactions and bursting behaviors near a free surface, Physics of Fluids, 31(4) (2019) 042104.
[26] H.C. Pumphrey, L. Crum, The acoustic field of an oscillating bubble near a free surface, The Journal of the Acoustical Society of America, 84(S1) (1988) S202-S202.
[27] S. Ohl, E. Klaseboer, B. Khoo, The dynamics of a non-equilibrium bubble near bio-materials, Physics in Medicine & Biology, 54(20) (2009) 6313.
[28] P. Koukouvinis, G. Strotos, Q. Zeng, S.R. Gonzalez-Avila, A. Theodorakakos, M. Gavaises, C.-D. Ohl, Parametric investigations of the induced shear stress by a laser-generated bubble, Langmuir, 34(22) (2018) 6428-6442.
[29] A. Osterman, M. Dular, B. Sirok, Numerical simulation of a near-wall bubble collapse in an ultrasonic field, Journal of Fluid Science and Technology, 4(1) (2009) 210-221.
[30] E.A. Brujan, G.S. Keen, A. Vogel, J.R. Blake, The final stage of the collapse of acavitation bubble close to a rigid boundary, J.  Phys. Fluids, 14 (2002) 85–92.
[31] J. Luo, W. Xu, J. Deng, Y. Zhai, Q. Zhang, Experimental study on the impact characteristics of cavitation bubble collapse on a wall, Water, 10(9) (2018) 1262.
[32] O. Supponen, D. Obreschkow, M. Farhat, Rebounds of deformed cavitation bubbles, Physical Review Fluids, 3(10) (2018) 103604.
[33] C. Lechner, W. Lauterborn, M. Koch, R. Mettin, Jet formation from bubbles near a solid boundary in a compressible liquid: Numerical study of distance dependence, Physical Review Fluids, 5(9) (2020) 093604.
[34] Y. Liu, Y. Peng, Study on the collapse process of cavitation bubbles near the concave wall by lattice Boltzmann method pseudo-potential model, Energies, 13(17) (2020) 4398.
[35] M. Koch, C. Lechner, F. Reuter, K. Kohler, R. Mettin, W. Lauterborn, Numerical modeling of laser generated cavitation bubbles with the finite volume and volume of fluid method, using OpenFOAM, J.  Comput. Fluids, 126 (2016) 71-90.
[36] T. Li, S. Wang, S. Li, A. M. Zhang, Numerical investigation of an underwater explosion bubble based on FVM and VOF, J. Appl. Ocean Res., 74 (2018) 49-58.
[37] E. Berberović, N.P. van Hinsberg, S. Jakirlić, I.V. Roisman, C. Tropea, Drop impact onto a liquid layer of finite thickness: Dynamics of the cavity evolution, Physical Review E—Statistical, Nonlinear, and Soft Matter Physics, 79(3) (2009) 036306.
[38] R. Maddahian, M.J. Cervantes, D.M. Bucur, Numerical investigation of entrapped air pockets on pressure surges and flow structure in a pipe, Journal of Hydraulic Research, 58(2) (2020) 218-230.
[39] H.G. Weller, A new approach to VOF-based interface capturing methods for incompressible and compressible flow, OpenCFD Ltd., Report TR/HGW, 4 (2008) 35.
[40] B. Lafaurie, C. Nardone, R. Scardovelli, S. Zaleski, G. Zanetti, Modelling merging and fragmentation in multiphase flows with surfer, J. Comp. Phys., 113 (1994) 134 – 147.
[41] J.D. Anderson, Governing equations of fluid dynamics, Computational fluid dynamics: an introduction,  (1992) 15-51.
[42] J. Yin, Y. Zhang, J. Zhu, Y. Zhang, S. Li, On the thermodynamic behaviors and interactions between bubble pairs: A numerical approach, Ultrasonics Sonochemistry, 70 (2021) 105297.
[43] B. Shin, Y. Iwata, T. Ikohagi, Numerical simulation of unsteady cavitating flows using a homogenous equilibrium model, Computational Mechanics, 30 (2003) 388-395.
[44] T. Yamamoto, S.-i. Hatanaka, S.V. Komarov, Fragmentation of cavitation bubble in ultrasound field under small pressure amplitude, Ultrasonics sonochemistry, 58 (2019) 104684.
[45] I. Akhatov, O. Lindau, A. Topolnikov, R. Mettin, N. Vakhitova, W. Lauterborn, Collapse and rebound of a laser-induced cavitation bubble, Physics of Fluids, 13(10) (2001) 2805-2819.
[46] H.T. Chen, R. Collins, Shock wave propagation past an ocean surface, J. Comput. Phys., 7 (1971) 89-101.
[47] P. Gregorčič, R. Petkovšek, J. Možina, Investigation of a cavitation bubble between a rigid boundary and a free surface, Journal of applied physics, 102(9) (2007).
[48] D. Kröninger, K. Köhler, T. Kurz, W. Lauterborn, Particle tracking velocimetry of the flow field around a collapsing cavitation bubble, Experiments in fluids, 48(3) (2010) 395-408.
[49] K. Kerboua, O. Hamdaoui, Numerical investigation of the effect of dual frequency sonication on stable bubble dynamics, Ultrasonics Sonochemistry, 49 (2018) 325-332.
[50] B. Han, K. Köhler, K. Jungnickel, R. Mettin, W. Lauterborn, A. Vogel, Dynamics of laser-induced bubble pairs, Journal of Fluid Mechanics, 771 (2015) 706-742.
[51] I.B. Celik, U. Ghia, P.J. Roache, C.J. Freitas, Procedure for estimation and reporting of uncertainty due to discretization in CFD applications, Journal of fluids Engineering-Transactions of the ASME, 130(7) (2008).
[52] J. Lee, G. Son, Numerical simulation of bubble resonance in an acoustic field, Journal of Mechanical Science and Technology, 32 (2018) 1625-1632.