[1] J.W. Maina, Understanding the types and causes of diabetes mellitus, 2018.
[2] J.F. Yale, B. Paty, P.A. Senior, Diabetes Canada Clinical Practice Guidelines Expert Committee, Hypoglycemia, Canadian journal of diabetes, 42 (2018) S104-S108.
[3] M.G. Tinajero, V.S. Malik, An update on the epidemiology of type 2 diabetes: a global perspective, Endocrinology and Metabolism Clinics, 50(3) (2021) 337-355.
[4] A. Cinar, Artificial pancreas systems: An introduction to the special issue, IEEE Control Systems Magazine, 38 (2018) 26-29.
[5] A. Bhattacharjee, A. Easwaran, M.K.-S Leow, N. Cho, Evaluation of an artificial pancreas in in silico patients with online-tuned internal model control, Biomedical Signal Processing and Control, 41 (2018) 198-209.
[6] A. Haidar, The artificial pancreas: How closed-loop control is revolutionizing diabetes, IEEE Control Systems Magazine, 36 (2016)
[7] P. Colmegna, R.S. Sánchez-Peña, R. Gondhalekar, Linear parameter-varying model to design control laws for an artificial pancreas, Biomedical Signal Processing and Control, 40 (2018) 204-213.
[8] S.D. Patek, M.D. Breton, Y. Chen, C. Solomon, B. Kovatchev, Linear quadratic gaussian-based closed-loop control of type 1 diabetes, Journal of Diabetes Science and Technology, 1 (2007) 834-841.
[9] S. Skogestad, Simple analytic rules for model reduction and PID controller tuning, Journal of process control, 13 (2003) 291-309.
[10] G. Marchetti, M. Barolo, L. Jovanovic, H. Zisser, D.E. Seborg, An improved PID switching control strategy for type 1 diabetes, IEEE transactions on biomedical engineering, 55 (2008).
[11] A. Nath, R. Dey, V.E. Balas, Closed loop blood glucose regulation of type 1 diabetic patient using Takagi-Sugeno fuzzy logic control, In International Workshop Soft Computing Applications, (2016) 286-296.
[12] A.Y.B. Sasi, M.A. Elmalki, A fuzzy controller for blood glucose-insulin system, 2013.
[13] M. Elhoushy, B.A. Zalam, A. Sayed, Automated blood glucose regulation for nonlinear model of type-1 diabetic patient under uncertainties: GWOCS type-2 fuzzy approach, Biomed. Eng. Lett. 14 (2024) 127-151.
[14] A. Sharma, H.P. Nilam, H.P. Singh, Computer-controlled diabetes disease diagnosis technique based on fuzzy inference structure for insulin-dependent patients, Applied Intelligence, 53(2) (2023) 1945-1958.
[15] Z. Kochaki, M.R. Yousefi, K. Shojaei, Blood glucose control for type 1 diabetic patients: robust fuzzy adaptive approach, Journal of Intelligent Procedures in Electrical Technology, 14(53) (2023) 171-188.
[16] S. Yan, L.L. Chu, Y. Cai, Robust H∞ control of T–S fuzzy blood glucose regulation system via adaptive event-triggered scheme, Biomedical Signal Processing and Control, 83 (2023) 104643.
[17] S. Langarica, M. Rodriguez-Fernandez, F. Núñez, F.J. Doyle III, A meta-learning approach to personalized blood glucose prediction in type 1 diabetes, Control Engineering Practice, 135 (2023) 105498.
[18] S. Das, A. Nath, R. Dey, S. Chaudhury, Glucose regulation in diabetes patients via insulin pump: A feedback linearisation approach, In Innovations in infrastructure, (2019) 55-65.
[19] S.A. Babar, I.A. Rana, M. Arslan, M.W. Zafar, Integral backstepping based automated control of blood glucose in diabetes mellitus type 1 patients, IEEE Access, 7 (2019) 173286-173293.
[20] S. Ahmad, N. Ahmed, M. Ilyas, W. Khan, Super twisting sliding mode control algorithm for developing artificial pancreas in type 1 diabetes patients, Biomedical Signal Processing and Control, 38 (2017) 200-211.
[21] W. Alam, N. Ali, S. Ahmad, J. Iqbal, Super twisting control algorithm for blood glucose regulation in type 1 diabetes patients, In 15th International Bhurban Conference on Applied Sciences and Technology, (2018) 298-303.
[22] N.T. Parsa, A.R. Vali, R. Ghasemi, Back stepping sliding mode control of blood glucose for type I diabetes, World Academy of Science, Engineering and Technology, International Journal of Medical, Health, Biomedical, Bioengineering and Pharmaceutical Engineering, 8 (2014) 779-783.
[23] A.G.G. Hernández, L. Fridman, A. Levant, Y. Shtessel, R. Leder, C.R. Monsalve, S.I. Andrade, High-order sliding-mode control for blood glucose: Practical relative degree approach, Control Engineering Practice, 21 (2013) 747–758.
[24] E. Ruiz-Velázquez, R. Femat, D.U. Campos-Delgado, Blood glucose control for type I diabetes mellitus: A robust tracking H∞ problem, Control engineering practice, 12 (2004) 1179-1195.
[25] L. Kovács, Linear parameter varying (LPV) based robust control of type-I diabetes driven for real patient data, Knowledge-Based Systems, 122 (2017) 199-213.
[26] H. Khan, J.K. Tar, I. Rudas, L. Kovács, G. Eigner, Receding horizon control of type 1 diabetes mellitus by using nonlinear programming, Complexity, 2018.
[27] W. Alam, Q. Khan, R.A. Riaz, R. Akmeliawati, I. Khan, K.S. Nisar, Gain scheduled observer-based finite-time control algorithm for an automated closed-loop insulin delivery system, IEEE Access, 8 (2020)103088-103099.
[28] D.K. Parrish, D.B. Ridgely, Control of an artificial human pancreas using the SDRE method, In Proceedings of the American Control Conference, 2 (1997) 1059-1060.
[29] C. Li, R. Hu, Fuzzy-PID control for the regulation of blood glucose in diabetes, In WRI Global Congress on Intelligent Systems, 2 (2009) 170-174.
[30] M. Homayounzade, Variable structure robust controller design for blood glucose regulation for type 1 diabetic patients: A backstepping approach, IET Systems Biology, 2021.
[31] T. Zhou, J.L. Dickson, J. Geoffrey Chase, Autoregressive modeling of drift and random error to characterize a continuous intravascular glucose monitoring sensor, Journal of diabetes science and technology, 12 (2018) 90-104.
[32] C.E. De Block, P. Rogiers, P.G. Jorens, T. Schepens, C. Scuffi, L.F. Van Gaal, A comparison of two insulin infusion protocols in the medical intensive care unit by continuous glucose monitoring, Annals of intensive care, 6 (2016) 1-13.
[33] T. Wollersheim, L.J. Engelhardt, J. Pachulla, R. Moergeli, S. Koch, C. Spies, ..., S. Weber-Carstens, Accuracy, reliability, feasibility and nurse acceptance of a subcutaneous continuous glucose management system in critically ill patients: a prospective clinical trial, Annals of intensive care, 6 (2016) 1-13.
[34] T. Zhou, J.L. Dickson, G.M. Shaw, J.G. Chase, Continuous glucose monitoring measures can be used for glycemic control in the ICU: an in-silico study, Journal of diabetes science and technology, 12 (2018) 7-19.
[35] A. Borri, F. Cacace, A. De Gaetano, A. Germani, C. Manes, P. Palumbo, S. Panunzi, P. Pepe, Luenberger-like observers for nonlinear time-delay systems with application to the artificial pancreas: The attainment of good performance, IEEE Control Systems Magazine, 37 (2017a) 33-49.
[36] A. Borri, P. Palumbo, C. Manes, S. Panunzi, A. De Gaetano, Sampled-data observer-based glucose control for the artificial pancreas, Acta Polytechnica Hungarica, 14 (2017b) 79-94.
[37] A. Nath, D. Deb, R. Dey, Robust observer-based adaptive control of blood glucose in diabetic patients, International Journal of Control, (2020) 1-14.
[38] A. Gy¨orgy, L. Kov´acs, P. Szalay, D.A. Drexler, B. Beny´o, Z. Beny´o, Quasi-model-based control of type 1 diabetes mellitus, Journal of Electrical and Computer Engineerin, 4 (2011a).
[39] A. Gy¨orgy, L. Kov´acs, P. Szalay, D.A. Drexler, B. Beny´o, Z. Beny´o, Quasi-model-based control of type 1 diabetes mellitus, Journal of Electrical and Computer Engineering, 4 (2011b).
[40] W. Liu, F. Tang, Modeling a simplified regulatory system of blood glucose at molecular levels, Journal of Theoretical Biology, 252 (2008) 608-620.
[41] M. Mera, A. Polyakov, W. Perruquetti, Finite-time attractive ellipsoid method: implicit lyapunov function approach, International Journal of Control, 89 (2016) 1079-1090.
[42] L. Kovács, G. Eigner, M. Siket, L. Barkai, Control of diabetes mellitus by advanced robust control solution, IEEE Access, 7 (2019) 125609-125622.
[43] H. Khalil, Nonlinear Systems, Pearson; 3rd edition, 2001.
[44] J.J.E. Slotine, W. Li, Applied nonlinear control, Englewood Cliffs, NJ: Prentice hall, 1991.
[45] M. Homayounzade, Variable structure robust controller design for blood glucose regulation for type 1 diabetic patients: A backstepping approach, IET Systems Biology, 15(6) (2021) 173-83.
[46] G. Pacini, R.N. Bergman, MINMOD: a computer program to calculate insulin sensitivity and pancreatic responsivity from the frequently sampled intravenous glucose tolerance test, Computer methods and programs in biomedicine, 23(2) (1986) 113-122.
[47] R.N. Bergman, L.S. Phillips, C. Cobelli, Physiologic evaluation of factors controlling glucose tolerance in man: measurement of insulin sensitivity and beta-cell glucose sensitivity from the response to intravenous glucose, The Journal of clinical investigation, 68(6) (1981) 1456-1467.
[48] H. Thabit, R. Hovorka, M. Evans, Artificial pancreas: the bridge to a cure for type 1 diabetes, European Diabetes Nursing, 9(2) (2012) 56-60.
[49] K. Rebrin, G.M. Steil, Can interstitial glucose assessment replace blood glucose measurements?, Diabetes technology & therapeutics, 2(3) (2000) 461-472.
[50] R. Leproult, E. Van Cauter, Role of sleep and sleep loss in hormonal release and metabolism, Pediatric Neuroendocrinology, 17 (2010) 11-21.