[1] S. Park, S. Yang, A mathematical approach for analyzing ultra precision positioning system with compliant mechanism, Journal of Materials Processing Technology, 164 (2005) 1584-1589.
[2] J.S. Cuellar, G. Smit, D. Plettenburg, A. Zadpoor, Additive manufacturing of non-assembly mechanisms, Additive Manufacturing, 21 (2018) 150-158.
[3] S. Kota, J. Joo, Z. Li, S.M. Rodgers, J. Sniegowski, Design of compliant mechanisms: applications to MEMS, Analog integrated circuits and signal processing, 29(1) (2001) 7-15.
[4] A.J. Fleming, Y.K. Yong, An ultrathin monolithic XY nanopositioning stage constructed from a single sheet of piezoelectric material, IEEE/ASME Transactions on Mechatronics, 22(6) (2017) 2611-2618.
[5] P. Ouyang, R. Tjiptoprodjo, W. Zhang, G. Yang, Micro-motion devices technology: The state of arts review, The International Journal of Advanced Manufacturing Technology, 38(5) (2008) 463-478.
[6] C.N. Wang, T.D.-M. Le, Optimization parameter for microgripper based on triple-stair compliant mechanism using GTs-TOPSIS, The International Journal of Advanced Manufacturing Technology, 120(11) (2022) 7967-7983.
[7] R. Bharanidaran, T. Ramesh, A modified post-processing technique to design a compliant based microgripper with a plunger using topological optimization, The International Journal of Advanced Manufacturing Technology, 93(1) (2017) 103-112.
[8] H.A. Sodano, D.J. Inman, G. Park, A review of power harvesting from vibration using piezoelectric materials, Shock and Vibration Digest, 36(3) (2004) 197-206.
[9] J. Granstrom, J. Feenstra, H.A. Sodano, K. Farinholt, Energy harvesting from a backpack instrumented with piezoelectric shoulder straps, Smart materials and structures, 16(5) (2007) 1810.
[10] X. Sun, B. Yang, A new methodology for developing flexure-hinged displacement amplifiers with micro-vibration suppression for a giant magnetostrictive micro drive system, Sensors and Actuators A: Physical, 263 (2017) 30-43.
[11] G. Song, V. Sethi, Vibration Control of Civil Structures using Piezoceramic Smart Materials, Engineering, Construction, and Operations in Challenging Environments: Earth and Space 2004, (2004) 546-553.
[12] K.-q. Qi, Y. Xiang, C. Fang, Y. Zhang, C.-s. Yu, Analysis of the displacement amplification ratio of bridge-type mechanism, Mechanism and Machine Theory, 87 (2015) 45-56.
[13] K.-B. Choi, J.J. Lee, G.H. Kim, H.J. Lim, S.G. Kwon, Amplification ratio analysis of a bridge-type mechanical amplification mechanism based on a fully compliant model, Mechanism and Machine Theory, 121 (2018) 355-372.
[14] J. Khurana, B. Hanks, M. Frecker, Design for additive manufacturing of cellular compliant mechanism using thermal history feedback, in: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, American Society of Mechanical Engineers, 2018, pp. V02AT03A035.
[15] M. Wang, D. Ge, L. Zhang, J.L. Herder, Micro-scale Realization of Compliant Mechanisms: Manufacturing Processes and Constituent Materials—A Review, Chinese Journal of Mechanical Engineering, 34(1) (2021) 1-22.
[16] R. Clement, J. Huang, Z. Sun, J. Wang, W. Zhang, Motion and stress analysis of direct-driven compliant mechanisms with general-purpose finite element software, The International Journal of Advanced Manufacturing Technology, 65(9) (2013) 1409-1421.
[17] W. Bejgerowski, J.W. Gerdes, S.K. Gupta, H.A. Bruck, Design and fabrication of miniature compliant hinges for multi-material compliant mechanisms, The International Journal of Advanced Manufacturing Technology, 57(5) (2011) 437-452.
[18] M. Liu, X. Zhang, S. Fatikow, Design and analysis of a multi-notched flexure hinge for compliant mechanisms, Precision Engineering, 48 (2017) 292-304.
[19] Y. Tian, B. Shirinzadeh, D. Zhang, Closed-form compliance equations of filleted V-shaped flexure hinges for compliant mechanism design, Precision Engineering, 34(3) (2010) 408-418.
[20] N. Lobontiu, J.S. Paine, E. Garcia, M. Goldfarb, Design of symmetric conic-section flexure hinges based on closed-form compliance equations, Mechanism and machine theory, 37(5) (2002) 477-498.
[21] J. Chen, C. Zhang, M. Xu, Y. Zi, X. Zhang, Rhombic micro-displacement amplifier for piezoelectric actuator and its linear and hybrid model, Mechanical Systems and Signal Processing, 50 (2015) 580-593.
[22] G. Ye, W. Li, Y.-q. Wang, X.-f. Yang, L. Yu, Kinematics analysis of bridge-type micro-displacement mechanism based on flexure hinge, in: The 2010 IEEE International Conference on Information and Automation, IEEE, 2010, pp. 66-70.
[23] X. Shen, L. Zhang, D. Qiu, A lever-bridge combined compliant mechanism for translation amplification, Precision Engineering, 67 (2021) 383-392.
[24] H. Wu, L. Lai, L. Zhu, Analytical model and experimental verification of an elliptical bridge-type compliant displacement amplification mechanism, Review of Scientific Instruments, 92(5) (2021) 055109.
[25] G. Haertling, Compositional study of PLZT Rainbow ceramics for piezo actuators, in: Proceedings of 1994 IEEE International Symposium on Applications of Ferroelectrics, IEEE, 1994, pp. 313-318.
[26] L.L. Howell, A. Midha, T.W. Norton, Evaluation of equivalent spring stiffness for use in a pseudo-rigid-body model of large-deflection compliant mechanisms, (1996).
[27] S. Wu, Z. Shao, H. Su, H. Fu, An energy-based approach for kinetostatic modeling of general compliant mechanisms, Mechanism and Machine Theory, 142 (2019) 103588.
[28] M. Korayem, H. Rahimi, A. Nikoobin, M. Nazemizadeh, Maximum allowable dynamic payload for flexible mobile robotic manipulators, Latin American applied research, 43(1) (2013) 29-35.
[29] T. Yeom, T.W. Simon, M. Zhang, M.T. North, T. Cui, High frequency, large displacement, and low power consumption piezoelectric translational actuator based on an oval loop shell, Sensors and Actuators A: Physical, 176 (2012) 99-109.
[30] F. Ma, G. Chen, Modeling large planar deflections of flexible beams in compliant mechanisms using chained beam-constraint-model, Journal of Mechanisms and Robotics, 8(2) (2016).
[31] X. Pei, J. Yu, G. Zong, S. Bi, An effective pseudo-rigid-body method for beam-based compliant mechanisms, Precision Engineering, 34(3) (2010) 634-639.
[32] E. Abele, S. Rothenbücher, M. Weigold, Cartesian compliance model for industrial robots using virtual joints, Production Engineering, 2(3) (2008) 339-343.
[33] S. Shi, H. Wu, Y. Song, H. Handroos, M. Li, Y. Cheng, B. Mao, Static stiffness modelling of EAST articulated maintenance arm using matrix structural analysis method, Fusion Engineering and Design, 124 (2017) 507-511.
[34] S. Grazioso, G.D. Gironimo, L. Rosati, B. Siciliano, Modeling and simulation of hybrid soft robots using finite element methods: Brief overview and benefits, in: International Symposium on Advances in Robot Kinematics, Springer, 2020, pp. 335-340.
[35] A. Taghvaeipour, J. Angeles, L. Lessard, On the elastostatic analysis of mechanical systems, Mechanism and Machine Theory, 58 (2012) 202-216.
[36] M. Ling, J. Cao, M. Zeng, J. Lin, D.J. Inman, Enhanced mathematical modeling of the displacement amplification ratio for piezoelectric compliant mechanisms, Smart Materials and Structures, 25(7) (2016