[1] P. Galli, G. Vecellio, Polyolefins: The most promising large‐volume materials for the 21st century, Journal of Polymer Science Part A: Polymer Chemistry, 42(3) (2004) 396-415.
[2] S. Schneiderbauer, S. Puttinger, S. Pirker, P. Aguayo, V. Kanellopoulos, CFD modeling and simulation of industrial scale olefin polymerization fluidized bed reactors, Chemical Engineering Journal, 264 (2015) 99-112.
[3] D. Jeremic, Polyethylene, Ullmann's encyclopedia of industrial chemistry, (2000) 1-42.
[4] F.A. Fernandes, L.M. Lona, Heterogeneous modeling for fluidized-bed polymerization reactor, Chemical Engineering Science, 56(3) (2001) 963-969.
[5] A. Farhangiyan Kashani, H. Abedini, M.R. Kalaee, Simulation of an industrial linear low density polyethylene plant, Chemical Product and Process Modeling, 6(1) (2011).
[6] M. Khan, M. Hussain, Z. Mansourpour, N. Mostoufi, N. Ghasem, E. Abdullah, CFD simulation of fluidized bed reactors for polyolefin production–A review, Journal of Industrial and Engineering Chemistry, , 20(6) (2014) 3919-3946
[7] K. Jang, Y. Feng, H. Li, Investigation of Bubble Behavior in Gas‐Solid Fluidized Beds with Different Gas Distributors, Chemical Engineering & Technology, 44(4) (2021) 723-731.
[8] X.-Z. Chen, D.-P. Shi, X. Gao, Z.-H. Luo, A fundamental CFD study of the gas–solid flow field in fluidized bed polymerization reactors, Powder Technology, 205(1-3) (2011) 276-288.
[9] P. Xu, Y. Li, Y. Wang, Y. Liu, Q. Zhang, G. Chang, Gas-solid mixing characteristics of Geldart B particles in a fluidized bed with different height-to-diameter ratios, in: Journal of Physics: Conference Series, IOP Publishing, 2021, pp. 012166.
[10] J. Sun, Y. Zhou, C. Ren, J. Wang, Y. Yang, CFD simulation and experiments of dynamic parameters in gas–solid fluidized bed, Chemical engineering science, 66(21) (2011) 4972-4982.
[11] S. Debnath, H. Nath, V. Chauhan, CFD modeling of a typical fluidized bed column, Materials Today: Proceedings, 46 (2021) 6178-6184.
[12] T.B. Anderson, R. Jackson, Fluid mechanical description of fluidized beds. Equations of motion, Industrial & Engineering Chemistry Fundamentals, 6(4) (1967) 527-539.
[13] M. Syamlal, T.J. O’Brien, Computer simulation of bubbles in a fluidized bed, in: AIChE Symp. Ser, Publ by AIChE, 1989, pp. 22-31.
[14] C.K. Lun, S.B. Savage, D. Jeffrey, N. Chepurniy, Kinetic theories for granular flow: inelastic particles in Couette flow and slightly inelastic particles in a general flowfield, Journal of fluid mechanics, 140 (1984) 223-256.
[15] D. Gidaspow, Multiphase flow and fluidization: continuum and kinetic theory descriptions, Academic press, 1994.
[16] P.C. Johnson, R. Jackson, Frictional–collisional constitutive relations for granular materials, with application to plane shearing, Journal of fluid Mechanics, 176 (1987) 67-93.
[17] J. Sinclair, R. Jackson, Gas‐particle flow in a vertical pipe with particle‐particle interactions, AIChE journal, 35(9) (1989) 1473-1486.
[18] D.Z. Zhang, R.M. Rauenzahn, A viscoelastic model for dense granular flows, Journal of Rheology, 41(6) (1997) 1275-1298
[19] D.G. Schaeffer, Instability in the evolution equations describing incompressible granular flow, Journal of differential equations, 66(1) (1987) 19-50.
[20] A. Bakshi, C. Altantzis, R. Bates, A. Ghoniem, Study of the effect of reactor scale on fluidization hydrodynamics using fine-grid CFD simulations based on the two-fluid model, Powder Technology, 299 (2016) 185-198.
[21] A. Busciglio, G. Vella, G. Micale, L. Rizzuti, Analysis of the bubbling behaviour of 2D gas solid fluidized beds: Part II. Comparison between experiments and numerical simulations via digital image analysis technique, Chemical Engineering Journal, 148(1) (2009) 145-163.
[22] P.J. Roache, Quantification of uncertainty in computational fluid dynamics, Annual review of fluid Mechanics, 29(1) (1997) 123-160.
[23] spatconv @ www.grc.nasa.gov, (n.d.). https://www.grc.nasa.gov/www/wind/valid/tutorial/spatconv.html (reached April 2024)
[24] R.C. Darton, L. RD, D. JF, D. Harrison, BUBBLE GROWTH DUE TO COALESCENCE IN FLUIDISED BEDS, 55 (1977) 274-280.
[25] H. Norouzi, N. Mostoufi, Z. Mansourpour, R. Sotudeh-Gharebagh, J. Chaouki, Characterization of solids mixing patterns in bubbling fluidized beds, Chemical Engineering Research and Design, 89(6) (2011) 817-826.
[26] T. Li, L. Wang, W. Rogers, G. Zhou, W. Ge, An approach for drag correction based on the local heterogeneity for gas–solid flows, AIChE Journal, 63(4) (2017) 1203-1212.
[27] D. Patil, M. van Sint Annaland, J. Kuipers, Critical comparison of hydrodynamic models for gas–solid fluidized beds—Part I: bubbling gas–solid fluidized beds operated with a jet, Chemical engineering science, 60(1) (2005) 57-72.
[28] L.L. Yang, J.J. Padding, J.H. Kuipers, Modification of kinetic theory of granular flow for frictional spheres, part II: Model validation, Chemical Engineering Science, 152 (2016) 783-794.