[1] A.N. Gent, Engineering with rubber: how to design rubber components, Carl Hanser Verlag GmbH Co KG, (2012).
[2] A.N. Gent, J.D. Walter, Pneumatic tire, Mechanical engineering faculty research, (2006), 854.
[3] P. Behroozinia, S. Taheri, R. Mirzaeifar, An investigation of intelligent tires using multiscale modeling of cord-rubber composites, Mechanics Based Design of Structures and Machines, 46(2) (2018) 168-183.
[4] M.R. Kashani, Aramid‐short‐fiber reinforced rubber as a tire tread composite, Journal of applied polymer science, 113(2) (2009) 1355-1363.
[5] L. Qu, Y. Nie, G. Huang, G. Weng, J. Wu, Dynamic fatigue behavior of natural rubber reinforced with nanoclay and carbon black, Journal of Macromolecular Science, Part B, 50(8) (2011) 1646-1657.
[6] J. Clarke, J. Harris, Controlled orientation of short fibre reinforcement for anisotropic performance of rubber compounds, Plastics, rubber and composites, 30(9) (2001) 406-415.
[7] J. Zhong, Z. Luo, Z. Hao, Y. Guo, Z. Zhou, P. Li, B. Xue, Enhancing fatigue properties of styrene butadiene rubber composites by improving interface adhesion between coated aramid fibers and matrix, Composites Part B: Engineering, 172 (2019) 485-495.
[8] J. Gao, X. Yang, L. Huang, Numerical prediction of mechanical properties of rubber composites reinforced by aramid fiber under large deformation, Composite Structures, 201 (2018) 29-37.
[9] S. Weiser, T. Lehmann, R. Landgraf, N. Goldberg, H. Donner, J. Ihlemann, Experimental and numerical analysis of cord–elastomer composites, Journal of Rubber Research, 24(2) (2021) 211-225.
[10] V. Golovanevskiy, A. Kondratiev, Elastic Properties of Steel-Cord Rubber Conveyor Belt, Experimental Techniques, 45(2) (2021) 217-226.
[11] D. Wei, C. An, C. Wu, M. Duan, S.F. Estefen, Torsional structural behavior of composite rubber hose for offshore applications, Applied Ocean Research, 128 (2022) 103333-103333.
[12] Y. Dong, X. Yao, H. Yan, L. Yuan, H. Yang, Macro-and mesoscopic mechanical properties of complex fabric rubber composite under different temperatures, Composite Structures, 230 (2019) 111510-111510.
[13] A.V. Pozdeev, D.A. Chumakov, V.V. Novikov, I.A. Golyatkin, K.V. Chernyshov, A.E. Gavrilov, A.V. Leonard, Thermographic bench tests of rubber-cord pneumatic spring, in: IOP Conference Series: Materials Science and Engineering, IOP Publishing, 2019, pp. 12042-12042.
[14] Z. Hashin, A. Rotem, A Fatigue Failure Criterion for Fiber Reinforced Materials, Journal of Composite Materials, 7(4) (1973) 448-464.
[15] M. Shariati, H. Hatami, H. Eipakchi, H. Yarahmadi, H. Torabi, Experimental and numerical investigations on softening behavior of POM under cyclic strain-controlled loading, Polymer-Plastics Technology and Engineering, 50(15) (2011) 1576-1582.
[16] M. Shariati, H. Hatami, H. Yarahmadi, H.R. Eipakchi, An experimental study on the ratcheting and fatigue behavior of polyacetal under uniaxial cyclic loading, Materials & Design, 34 (2012) 302-312.
[17] H. Hatami, M. Shariati, Numerical and experimental investigation of SS304L cylindrical shell with cutout under uniaxial cyclic loading, Iranian Journal of Science and Technology, Transactions of Mechanical Engineering, 43 (2019) 139-153.
[18] W. Van Paepegem, Fatigue damage modeling of fibre-reinforced composite materials, Applied Mechanics Reviews, 54(4) (2001) 279-300.
[19] P.C. Chou, R. Croman, Degradation and sudden-death models of fatigue of graphite/epoxy composites, in: Composite materials: testing and design (fifth conference), ASTM International, 1979.
[20] M.M. Shokrieh, L.B. Lessard, Progressive fatigue damage modeling of composite materials, Part I: Modeling, Journal of composite materials, 34(13) (2000) 1056-1080.
[21] M.M. Shokrieh, L.B. Lessard, Multiaxial fatigue behaviour of unidirectional plies based on uniaxial fatigue experiments—I. Modelling, International Journal of Fatigue, 19(3) (1997) 201-207.
[22] M.M. Shokrieh, L.B. Lessard, Multiaxial fatigue behaviour of unidirectional plies based on uniaxial fatigue experiments—II. Experimental evaluation, International journal of fatigue, 19(3) (1997) 209-217.
[23] M.M. Shokrieh, L.B. Lessard, Residual fatigue life simulation of laminated composites, in: International Conference on Advanced Composites(ICAC 98), Hurghada, Egypt 1998, pp. 79-86.
[24] P.C. Paris, M.P. Gomez, W.E. Anderson, A Rational Analytical Theory of Fatigue The Trend in Engineering, U. of Washington, Seattle, Wa, 13(1) (1961).
[25] P. Ladeveze, A damage approach for composite structures: theory and identification, in: Mechanical Identification of Composites. Dordrecht: Springer Netherlands, 1991, pp. 44-57.
[26] M. Naderi, M. Amiri, M.M. Khonsari, On the thermodynamic entropy of fatigue fracture, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 466(2114) (2009) 423-438.
[27] M. Naderi, M.M. Khonsari, Thermodynamic analysis of fatigue failure in a composite laminate, Mechanics of Materials, 46 (2012) 113-122.
[28] B. Mohammadi, A. Mahmoudi, Developing a new model to predict the fatigue life of cross-ply laminates using coupled CDM-entropy generation approach, Theoretical and Applied Fracture Mechanics, 95 (2018) 18-27.
[29] A. Mahmoudi, B. Mohammadi, Theoretical-experimental investigation of temperature evolution in laminated composites due to fatigue loading, Composite Structures, 225 (2019) 110972-110972.
[30] A. Mahmoudi, B. Mohammadi, On the evaluation of damage-entropy model in cross-ply laminated composites, Engineering Fracture Mechanics, 219 (2019) 106626-106626.
[31] A. Mahmoudi, B. Mohammadi, H. Hosseini‐Toudeshky, Damage behaviour of laminated composites during fatigue loading, Fatigue & Fracture of Engineering Materials & Structures, 43(4) (2020) 698-710.
[32] R. Joven, R. Das, A. Ahmed, P. Roozbehjavan, B. Minaie, Thermal properties of carbon fiber-epoxy composites with different fabric weaves, SAMPE, Charleston, SC, (2012).
[33] B. Mohammadi, B. Fazlali, D. Salimi-Majd, Development of a continuum damage model for fatigue life prediction of laminated composites, Composites Part A: Applied Science and Manufacturing, 93 (2017) 163-176.
[34] B. Mohammadi, M.M. Shokrieh, M. Jamali, A. Mahmoudi, B. Fazlali, Damage-entropy model for fatigue life evaluation of off-axis unidirectional composites, Composite Structures, 270 (2021) 114100-114100.
[35] M. Naderi, M.M. Khonsari, On the role of damage energy in the fatigue degradation characterization of a composite laminate, Composites Part B: Engineering, 45(1) (2013) 528-537.
[36] C. Cho, J.W. Holmes, J.R. Barber, Estimation of interfacial shear in ceramic composites from frictional heating measurements, Journal of the American Ceramic Society, 74(11) (1991) 2802-2808.
[37] J.T. South, Mechanical properties and durability of natural rubber compounds and composites, Virginia Polytechnic Institute and State University, 2002.
[38] S. Rao, I.M. Daniel, D. McFarlane, Fatigue and fracture behavior of a steel cord/rubber composite, Journal of Thermoplastic Composite Materials, 14(3) (2001) 213-224.
[39] S. Rao, I.M. Daniel, E.E. Gdoutos, Mechanical properties and failure behavior of cord/rubber composites, Applied composite materials, 11(6) (2004) 353-375.
[40] J. Song, Fatigue of cord-rubber composites for tires, The Pennsylvania State University, 2004.
[41] B. Lee, J. Smith, J. Medzorian, M. Chawla, P. Ulrich, Study of Fracture Behavior of Cord-Rubber Composites for Lab Prediction of Structural Durability of Aircraft Tires II. Fatigue Damage Accumulation of Bias Carcass, SAE Transactions, (1992) 1897-1903.
[42] J. Montesano, Z. Fawaz, H. Bougherara, Use of infrared thermography to investigate the fatigue behavior of a carbon fiber reinforced polymer composite, Composite structures, 97 (2013) 76-83.
[43] J. Huang, M.L. Pastor, C. Garnier, X.J. Gong, A new model for fatigue life prediction based on infrared thermography and degradation process for CFRP composite laminates, International Journal of Fatigue, 120 (2019) 87-95.