[1] A. Harten, High Resolution Schemes for Hyperbolic Conservation Laws, Journal of Computational Physics, 49 (1983) 357-393.
[2] P. Colella, P.R. Woodward, The Piecewise Parabolic Method (PPM) for Gas-Dynamical Simulations, Journal of Computational Physics, 54 (1984) 174-201.
[3] E.B.O.S. Harten A, S.R. Chakravarthy, Uniformly High Order Accurate Essentially Non-oscillatory Schemes, III, Journal of Computational Physics, 71 (1987) 231-303.
[4] X.D. Liu, S. Osher, T. Chan, Weighted Essentially Non-oscillatory Schemes, Journal of Computational Physics, 115(1) (1994) 200-212.
[5] G.S. Jiang, C.W. Shu, Efficient implementation of weighted ENO schemes, Journal of Computational Physics, 126(1) (1996) 202-228.
[6] S.C. W, Essentially Non-Oscillatory and Weighted Essentially Non-Oscillatory Schemes for Hyperbolic Conservation Laws, 1997.
[7] A.K. Henrick, T.D. Aslam, J.M. Powers, Mapped weighted essentially non-oscillatory schemes: Achieving optimal order near critical points, Journal of Computational Physics, 207(2) (2005) 542-567.
[8] H. Feng, F. Hu, R. Wang, A New Mapped Weighted Essentially Non-oscillatory Scheme, Journal of Scientific Computing, 51(2) (2012) 449-473.
[9] H. Feng, C. Huang, R. Wang, An improved mapped weighted essentially non-oscillatory scheme, Applied Mathematics and Computation, 232 (2014) 453-468.
[10] R. Wang, H. Feng, C. Huang, A New Mapped Weighted Essentially Non-oscillatory Method Using Rational Mapping Function, Journal of Scientific Computing, 67(2) (2016) 540-580.
[11] V. U S, B. Zang, T.H. New, Adaptive mapping for high order WENO methods, Journal of Computational Physics, 381 (2019) 162-188.
[12] U.S. Vevek, B. Zang, T.H. New, A New Mapped WENO Method for Hyperbolic Problems, Aerospace, 9(10) (2022).
[13] Z. Hong, Z. Ye, X. Meng, A mapping-function-free WENO-M scheme with low computational cost, Journal of Computational Physics, 405 (2020) 109145.
[14] F. Hu, High-order mapped WENO methods with improved efficiency, Computers & Fluids, 219 (2021) 104874.
[15] X. Zhang, C. Yan, F. Qu, An efficient smoothness indicator mapped WENO scheme for hyperbolic conservation laws, Computers & Fluids, 240 (2022) 105421.
[16] S. Tang, M. Li, A novel high efficiency adaptive mapped WENO scheme, Computers & Mathematics with Applications, 124 (2022) 149-162.
[17] R. Li, W. Zhong, A robust and efficient component-wise WENO scheme for Euler equations, Applied Mathematics and Computation, 438 (2023) 127583.
[18] R. Borges, M. Carmona, B. Costa, W.S. Don, An improved weighted essentially non-oscillatory scheme for hyperbolic conservation laws, Journal of Computational Physics, 227(6) (2008) 3191-3211.
[19] M. Castro, B. Costa, W.S. Don, High order weighted essentially non-oscillatory WENO-Z schemes for hyperbolic conservation laws, Journal of Computational Physics, 230(5) (2011) 1766-1792.
[20] F. Acker, R. B. de R. Borges, B. Costa, An improved WENO-Z scheme, Journal of Computational Physics, 313 (2016) 726-753.
[21] X. Luo, S.-p. Wu, An improved WENO-Z+ scheme for solving hyperbolic conservation laws, Journal of Computational Physics, 445 (2021) 110608.
[22] S. Rathan, N.R. Gande, A.A. Bhise, Simple smoothness indicator WENO-Z scheme for hyperbolic conservation laws, Applied Numerical Mathematics, 157 (2020) 255-275.
[23] Y. Wang, B.-S. Wang, W.S. Don, Generalized Sensitivity Parameter Free Fifth Order WENO Finite Difference Scheme with Z-Type Weights, Journal of Scientific Computing, 81(3) (2019) 1329-1358.
[24] A. Kumar, B. Kaur, R. Kumar, A new fifth order finite difference WENO scheme to improve convergence rate at critical points, Wave Motion, 109 (2022) 102859.
[25] S. Tang, M. Li, High-resolution mapping type WENO-Z schemes for solving compressible flow, International Journal for Numerical Methods in Fluids, 96(6) (2024) 1031-1056.
[26] E. Zauderer, Partial Differential Equations of Applied Mathematics, Wiley, 2006.
[27] R.J. LeVeque, Numerical Methods for Conservation Laws, 1992.
[28] C.-W. Shu, Essentially non-oscillatory and weighted essentially non-oscillatory schemes for hyperbolic conservation laws, in: A. Quarteroni (Ed.) Advanced Numerical Approximation of Nonlinear Hyperbolic Equations: Lectures given at the 2nd Session of the Centro Internazionale Matematico Estivo (C.I.M.E.) held in Cetraro, Italy, June 23–28, 1997, Springer Berlin Heidelberg, Berlin, Heidelberg, 1998, pp. 325-432.
[29] S. Gottlieb, D. Ketcheson, C.-W. Shu, Strong Stability Preserving Runge-Kutta and Multistep Time Discretizations, World Scientific, 2011.