[1] C. Kusuma, The effect of laser power and scan speed on melt pool characteristics of pure titanium and Ti-6Al-4V alloy for selective laser melting, (2016).
[2] S. Liao, S. Webster, D. Huang, R. Council, K. Ehmann, J. Cao, Simulation-guided variable laser power design for melt pool depth control in directed energy deposition, Additive Manufacturing, 56 (2022) 102912.
[3] J. Trejos-Taborda, L. Reyes-Osorio, C. Garza, P. del Carmen Zambrano-Robledo, O. Lopez-Botello, Finite element modeling of melt pool dynamics in laser powder bed fusion of 316L stainless steel, The International Journal of Advanced Manufacturing Technology, 120(5) (2022) 3947-3961.
[4] Y. Xu, D. Zhang, J. Deng, X. Wu, L. Li, Y. Xie, R. Poprawe, J.H. Schleifenbaum, S. Ziegler, Numerical simulation in the melt pool evolution of laser powder bed fusion process for Ti6Al4V, Materials, 15(21) (2022) 7585.
[5] X. Kaikai, G. Yadong, Z. Qiang, Numerical simulation of dynamic analysis of molten pool in the process of direct energy deposition, The International Journal of Advanced Manufacturing Technology, 124(7) (2023) 2451-2461.
[6] J. Goldak, A. Chakravarti, M. Bibby, A new finite element model for welding heat sources, Metallurgical transactions B, 15 (1984) 299-305.
[7] T. Kik, Computational techniques in numerical simulations of arc and laser welding processes, Materials, 13(3) (2020) 608.
[8] P. Li, Y. Fan, C. Zhang, Z. Zhu, W. Tian, A. Liu, Research on heat source model and weld profile for fiber laser welding of A304 stainless steel thin sheet, Advances in Materials Science and Engineering, 2018(1) (2018) 5895027.
[9] Y. Zhang, S. Li, G. Chen, J. Mazumder, Experimental observation and simulation of keyhole dynamics during laser drilling, Optics & Laser Technology, 48 (2013) 405-414.
[10] E. Mirkoohi, D.E. Seivers, H. Garmestani, S.Y. Liang, Heat source modeling in selective laser melting, Materials, 12(13) (2019) 2052.
[11] A. Kiran, Y. Li, J. Hodek, M. Brázda, M. Urbánek, J. Džugan, Heat source modeling and residual stress analysis for metal directed energy deposition additive manufacturing, Materials, 15(7) (2022) 2545.
[12] M.H. Farshidianfar, A. Khajepour, A. Gerlich, Real-time control of microstructure in laser additive manufacturing, The International Journal of Advanced Manufacturing Technology, 82 (2016) 1173-1186.
[13] W.-W. Liu, Z.-J. Tang, X.-Y. Liu, H.-J. Wang, H.-C. Zhang, A review on in-situ monitoring and adaptive control technology for laser cladding remanufacturing, Procedia Cirp, 61 (2017) 235-240.
[14] U. Fantz, Basics of plasma spectroscopy, Plasma sources science and technology, 15(4) (2006) S137.
[15] D.W. Hahn, N. Omenetto, Laser-induced breakdown spectroscopy (LIBS), part II: review of instrumental and methodological approaches to material analysis and applications to different fields, Applied spectroscopy, 66(4) (2012) 347-419.
[16] Y. Zhang, G.S. Hong, D. Ye, K. Zhu, J.Y. Fuh, Extraction and evaluation of melt pool, plume and spatter information for powder-bed fusion AM process monitoring, Materials & Design, 156 (2018) 458-469.
[17] M. Schmidt, P. Huke, C. Gerhard, K. Partes, In-Line Observation of Laser Cladding Processes via Atomic Emission Spectroscopy, Materials, 14(16) (2021) 4401.
[18] J.J. Valdiande, J. Mirapeix, J. Nin, E. Font, C. Seijas, J.M. Lopez-Higuera, Laser metal deposition on-line monitoring via plasma emission spectroscopy and spectral correlation techniques, IEEE Journal of Selected Topics in Quantum Electronics, 27(6) (2021) 1-8.
[19] V. Lednev, P. Sdvizhenskii, A.Y. Stavertiy, M.Y. Grishin, R. Tretyakov, R. Asyutin, S. Pershin, Online and in situ laser-induced breakdown spectroscopy for laser welding monitoring, Spectrochimica Acta Part B: Atomic Spectroscopy, 175 (2021) 106032.
[20] V.N. Lednev, P.A. Sdvizhenskii, R.D. Asyutin, R.S. Tretyakov, M.Y. Grishin, A.Y. Stavertiy, S.M. Pershin, In situ multi-elemental analysis by laser induced breakdown spectroscopy in additive manufacturing, Additive Manufacturing, 25 (2019) 64-70.
[21] R. Wang, D. Garcia, R.R. Kamath, C. Dou, X. Ma, B. Shen, H. Choo, K. Fezzaa, H.Z. Yu, Z. Kong, In situ melt pool measurements for laser powder bed fusion using multi sensing and correlation analysis, Scientific reports, 12(1) (2022) 13716.
[22] T. Moges, Z. Yang, K. Jones, S. Feng, P. Witherell, Y. Lu, Hybrid modeling approach for melt-pool prediction in laser powder bed fusion additive manufacturing, Journal of Computing and Information Science in Engineering, 21(5) (2021) 050902.
[23] S. Mondal, D. Gwynn, A. Ray, A. Basak, Investigation of melt pool geometry control in additive manufacturing using hybrid modeling, Metals, 10(5) (2020) 683.
[24] P.K. Nalajam, R. Varadarajan, A hybrid deep learning model for layer-wise melt pool temperature forecasting in wire-arc additive manufacturing process, IEEE Access, 9 (2021) 100652-100664.
[25] G. Fuchs, High temperature alloys, Kirk‐Othmer Encyclopedia of Chemical Technology, (2000).
[26] J. Rafiei, A.R. Ghasemi, Development of thermo-mechanical simulation of WC/Inconel 625 metal matrix composites laser cladding and optimization of process parameters, International Journal of Thermal Sciences, 198 (2024) 108883.
[27] M.I. Al Hamahmy, I. Deiab, Review and analysis of heat source models for additive manufacturing, The International Journal of Advanced Manufacturing Technology, 106 (2020) 1223-1238.
[28] N. Nguyen, Y. Mai, S. Simpson, A. Ohta, Analytical Approximate Solution for Double Ellipsoidal Heat Source in Finite Thick Plate, Welding journal, 83(3) (2004) 82.
[29] A. Lundbäck, H. Alberg, P. Henrikson, Simulation and validation of TIG-welding and post weld heat treatment of an Inconel 718 plate, in: International Seminar on Numerical Analysis of Weldability: 29/09/2003-01/10/2003, Techn. Univ. TYG, 2005, pp. 683-696.
[30] J. James, J. Spittle, S. Brown, R. Evans, A review of measurement techniques for the thermal expansion coefficient of metals and alloys at elevated temperatures, Measurement science and technology, 12(3) (2001) R1.
[31] A.H. Committee, Properties and selection: nonferrous alloys and special-purpose materials, in, ASM international, 1990.
[32] D. Raj, S.R. Maity, B. Das, Optimization of process parameters of laser cladding on AISI 410 using MEREC integrated MABAC method, Arabian Journal for Science and Engineering, 49(8) (2024) 10725-10739.
[33] V.N. Lednev, P.A. Sdvizhenskii, R.D. Asyutin, R.S. Tretyakov, M.Y. Grishin, A.Y. Stavertiy, A.N. Fedorov, S.M. Pershin, In situ elemental analysis and failures detection during additive manufacturing process utilizing laser induced breakdown spectroscopy, Optics Express, 27(4) (2019) 4612-4628.
[34] G. Cristoforetti, A. De Giacomo, M. Dell'Aglio, S. Legnaioli, E. Tognoni, V. Palleschi, N. Omenetto, Local thermodynamic equilibrium in laser-induced breakdown spectroscopy: beyond the McWhirter criterion, Spectrochimica Acta Part B: Atomic Spectroscopy, 65(1) (2010) 86-95.
[35] F. Anabitarte, A. Cobo, J.M. Lopez-Higuera, Laser‐induced breakdown spectroscopy: fundamentals, applications, and challenges, International Scholarly Research Notices, 2012(1) (2012) 285240.
[36] G. Dalton, R.A. Dragoset, J.R. Fuhr, D.E. Kelleher, S.A. Kotochigova, W.C. Martin, P.J. Mohr, A. Musgrove, K. Olsen Podobedova, NIST atomic spectra database, NIST SPECIAL PUBLICATION SP, (1998) 12-15.