Comprehensive Dynamic Modeling and Characterization of a Piezoelectric Droplet Dispenser

Document Type : Research Article

Authors

1 Department of mechanical engineering, Amirkabir university of technology

2 Amirkabir University of Technology

Abstract

Piezoelectric dispensers are widely applicable devices across many industries. However, their electromechanical structure often poses complexity in dynamic modeling. The interplay of many components especially compliant mechanisms and piezoelectric actuators makes modeling of the system challenging. In this study, the components of the system have been modeled individually and coupled together to predict the system behavior. For analyzing the bridge-type compliant mechanism, an appropriate method is proposed to model the structure with limited states. The mentioned method can predict the component behavior without sacrificing the precision which makes it ideal for coupling with other components' dynamics. Additionally, a non-linear modeling approach is introduced to capture the piezoelectric non-linear hysteresis behavior. Finally, by coupling the whole system dynamic, a comprehensive model is reached. The model developed for the compliant mechanism is individually validated by FEM software and experiments to prove the accuracy. The hysteresis nonlinear model is also identified and validated with the experiments with R squared exceeding 0.98. The entire coupled dynamics of the electromechanical system are identified and tested across several input frequencies. R-squared values exceed 0.95 for all input frequencies, affirming the accuracy of the dynamic model. Overall, the developed model is functional in the design and optimization of piezoelectric dispensers, as well as in automatic control system designs.

Keywords

Main Subjects