[1] S. Lu, X. Chen, H. Zheng, Y. Zhao, Y. Long, Simulation and Experiment on Droplet Volume for the Needle-Type Piezoelectric Jetting Dispenser, Micromachines, 10(9) (2019) 623.
[2] S. Lu, J. Zhang, Y. Liu, H. Zheng, C. Ren, W. liu, Droplet formation study of a liquid micro-dispenser driven by a piezoelectric actuator, Smart Materials and Structures, 28(5) (2019) 055003.
[3] L. Wang, X. Huang, S. Lin, Z. Bu, H. Jin, X. Lin, Z. Lin, P. Xie, Design and experiment of a jetting dispenser with compact amplifying mechanism and low stress in piezostack, Journal of Intelligent Material Systems and Structures, 31(5) (2020) 788-798.
[4] S. Zhou, P. Yan, Design and Analysis of a Hybrid Displacement Amplifier Supporting a High-Performance Piezo Jet Dispenser, Micromachines, 14(2) (2023) 322.
[5] Y. Shi, A. Huang, B. Fu, Design and performance analysis of a piezoelectric jetting dispensing valve, Journal of Intelligent Material Systems and Structures, 35(10) (2024) 920-941.
[6] H. Peng, J. Deng, G. Deng, C. Zhou, J. Li, Design and Research of a Novel Piezostack-Driven Jetting Dispenser With a Diamond Spring, IEEE Transactions on Components, Packaging and Manufacturing Technology, 12(11) (2022) 1849-1856.
[7] G. Li, C. Zhou, Rigid flexible coupling dynamic analysis of piezoelectric jetting dispenser based on ADAMS, IOP Conference Series: Earth and Environmental Science, 714(3) (2021) 032081.
[8] G. Deng, W. Cui, C. Zhou, J. Li, A piezoelectric jetting dispenser with a pin joint, Optik, 175 (2018) 163-171.
[9] J. Jeon, S.-M. Hong, M. Choi, S.-B. Choi, Design and performance evaluation of a new jetting dispenser system using two piezostack actuators, Smart Materials and Structures, 24(1) (2015) 015020.
[10] M.A. Trimzi, Y.B. Ham, B.C. An, Y.M. Choi, J.H. Park, S.N. Yun, Development of a Piezo-Driven Liquid Jet Dispenser with Hinge-Lever Amplification Mechanism, Micromachines, 11(2) (2020) 117.
[11] J.W. Sohn, S.-B. Choi, Identification of Operating Parameters Most Strongly Influencing the Jetting Performance in a Piezoelectric Actuator-Driven Dispenser, Applied Sciences, 8(2) (2018) 243.
[12] C. Zhou, J.a. Duan, G. Deng, J. Li, A Novel High-Speed Jet Dispenser Driven by Double Piezoelectric Stacks, IEEE Transactions on Industrial Electronics, 64(1) (2017) 412-419.
[13] R. Zhao, S. Lv, G. Chen, J. Chen, Q. Wang, M. Wu, J. Zheng, Design and experiment of a new double needle type piezoelectric jetting dispenser, Smart Materials and Structures, 32(3) (2023) 035022.
[14] L. Cao, S.G. Gong, Y.R. Tao, S.Y. Duan, Optimizing dispensing performance of needle-type piezoelectric jet dispensers: a novel drive waveform approach, Smart Materials and Structures, 33(4) (2024) 045001.
[15] C. Zhou, J. Li, J.A. Duan, G. Deng, Direct-Acting Piezoelectric Jet Dispenser With Rhombic Mechanical Amplifier, IEEE Transactions on Components, Packaging and Manufacturing Technology, 8(5) (2018) 910-913.
[16] G. Deng, N. Wang, C. Zhou, J. Li, A Simplified Analysis Method for the Piezo Jet Dispenser with a Diamond Amplifier, Sensors, 18(7) (2018) 2115.
[17] X. Chen, Z. Deng, S. Hu, X. Gao, J. Gao, Research on three-stage amplified compliant mechanism-based piezo-driven microgripper, Advances in Mechanical Engineering, 12(3) (2014) 1687814020911470.
[18] M. Ling, J. Wang, M. Wu, L. Cao, B. Fu, Design and modeling of an improved bridge-type compliant mechanism with its application for hydraulic piezo-valves, Sensors and Actuators A: Physical, 324 (2021) 112687.
[19] Y. Li, X. Zhu, S. Bi, R. Guo, J. Sun, W. Hu, Design and development of compliant mechanisms for electromagnetic force balance sensor, Precision Engineering, 64 (2020) 157-164.
[20] Z. Bu, S. Lin, X. Huang, A. Li, D. Wu, Y. Zhao, Z. Luo, L. Wang, A novel piezostack-driven jetting dispenser with corner-filleted flexure hinge and high-frequency performance, Journal of Micromechanics and Microengineering, 28(7) (2018) 075001.
[21] M. Wu, R.-M. Zhao, J.-N. Chen, J.-J. Zheng, B.-K. Shao, Design and performance analysis of a flexible-hinged piezoelectric driving dispenser, Smart Materials and Structures, 33(4) (2024) 045014.
[22] M. Ling, X. Zhang, Coupled dynamic modeling of piezo-actuated compliant mechanisms subjected to external loads, Mechanism and Machine Theory, 160 (2021) 104283.
[23] S. Bashash, N. Jalili, Robust Multiple Frequency Trajectory Tracking Control of Piezoelectrically Driven Micro/Nanopositioning Systems, IEEE Transactions on Control Systems Technology, 15(5) (2007) 867-878.
[24] H. Ghafarirad, S.M. Rezaei, A. Abdullah, M. Zareinejad, M. Saadat, Observer-based sliding mode control with adaptive perturbation estimation for micropositioning actuators, Precision Engineering, 35(2) (2011) 271-281.
[25] J. Gan, X. Zhang, H. Wu, A generalized Prandtl-Ishlinskii model for characterizing the rate-independent and rate-dependent hysteresis of piezoelectric actuators, Review of Scientific Instruments, 87(3) (2016) 035002.
[26] M. Ling, J. Cao, N. Pehrson, Kinetostatic and dynamic analyses of planar compliant mechanisms via a two-port dynamic stiffness model, Precision Engineering, 57 (2019) 149-161.
[27] M. Ling, C. Zhang, L. Chen, Optimized design of a compact multi-stage displacement amplification mechanism with enhanced efficiency, Precision Engineering, 77 (2022) 77-89.
[28] M. Ling, X. Zhang, J. Cao, Extended Dynamic Stiffness Model for Analyzing Flexure-Hinge Mechanisms With Lumped Compliance, Journal of Mechanical Design, 144(1) (2021) 013304.