[1] T.G. Langdon, The processing of ultrafine-grained materials through the application of severe plastic deformation, Journal of Materials Science, 42 (2007) 3388-3397.
[2] G.F. Hesam Torabzadeh, A Review of Methods for Producing Ultrafine-Grained and Nanostructured Tubes via Severe Plastic Deformation (SPD, Modares Mechanical Engineering Journal, 16(6) (2016) 271-282., (in Persian).
[3] R.Z. Valiev, Y. Estrin, Z. Horita, T.G. Langdon, M.J. Zechetbauer, Y.T. Zhu, Producing bulk ultrafine-grained materials by severe plastic deformation, Jom, 58 (2006) 33-39.
[4] R.Z. Valiev, T.G. Langdon, Principles of equal-channel angular pressing as a processing tool for grain refinement, Progress in materials science, 51(7) (2006) 881-981.
[5] G.F. Armin Siah-Sarani, Farshad Samadpour, Structural and Mechanical Study of Magnesium Alloy Produced by Hydrostatic Extrusion-Expansion Severe Plastic Deformation Technique, Modares Journal of Mechanical Engineering, 20(4) (2020) 925-932.(in Persian).
[6] F.G. Dehghan Qods Effect of Reverse Accumulative Roll Bonding Process on the Microstructure, Mechanical Properties, and Property Heterogeneity of AA1050 Aluminum Alloy, Amirkabir Journal of Mechanical Engineering, 48(2) (2016) 197-206. (in Persian).
[7] S.H.G.G. Hamed Makhsoudloo Development of a Novel Lubrication System to Improve the Mechanical Properties of Ultrafine-Grained Titanium Produced by Hot Pressing in a Forward-Backward Rod-Extrusion Channel, Amirkabir Journal of Mechanical Engineering, 51(5) (2019) 1047-1056.(in Persian).
[8] G. Arhin, A.-b. Ma, J.-h. Jiang, E.K. Taylor, D. Song, Microstructure evolution and mechanical properties of Mg–Mn–RE alloy processed by equal channel angular pressing, Materials Today Communications, 38 (2024) 107744.
[9] S. Dai, M.A. Khan, L. Liao, X. Zhang, D. Zhao, H. Wang, M.A. Afifi, J. Li, Effect of hot extrusion, novel stepwise-rolling, and heat treatment on microstructure, mechanical properties, and precipitate chemistry of ultra-high strength Al-Zn-Mg-Cu alloy, Journal of Alloys and Compounds, 1010 (2025) 177910.
[10] S.Q. Khayavi Emadeddin, Plastic Deformation Behavior of Aluminum Alloy 5452 Disks Under Unconstrained High-Pressure Torsion Process and the Effect of Rotational Speed and Applied Pressures on Their Critical Radius, Iranian Journal of Manufacturing Engineering, 3(3) (2017) 40-47. (in Persian).
[11] Kohdar, Investigation of Microstructure and Pseudoelastic Behavior in Fe-10Ni-7Mn (wt.%) Alloy Before and After High-Pressure Torsion Process, Journal of Metallurgical Engineering, 24(3) (2021) 216-227.(in Persian).
[12] Y.T. Zhu, T.C. Lowe, T.G. Langdon, Performance and applications of nanostructured materials produced by severe plastic deformation, Scripta Materialia, 51(8) (2004) 825-830.
[13] K. Xue, Z. Luo, S. Xia, J. Dong, P. Li, Study of microstructural evolution, mechanical properties and plastic deformation behavior of Mg-Gd-Y-Zn-Zr alloy prepared by high-pressure torsion, Materials Science and Engineering: A, 891 (2024) 145953.
[14] Y. Ivanisenko, R. Kulagin, V. Fedorov, A. Mazilkin, T. Scherer, B. Baretzky, H. Hahn, High pressure torsion extrusion as a new severe plastic deformation process, Materials Science and Engineering: A, 664 (2016) 247-256.
[15] R.Z. Valiev, Y. Estrin, L.S. Toth, T.C. Lowe, Bulk nanostructured materials, Advanced Engineering Materials, 17(12, SI) (2015) 1708-1709.
[16] H. Höppel, M. Kautz, C. Xu, M. Murashkin, T. Langdon, R. Valiev, H. Mughrabi, An overview: Fatigue behaviour of ultrafine-grained metals and alloys, International Journal of Fatigue, 28(9) (2006) 1001-1010.
[17] K. Edalati, K. Imamura, T. Kiss, Z. Horita, Equal-channel angular pressing and high-pressure torsion of pure copper: Evolution of electrical conductivity and hardness with strain, Materials Transactions, 53(1) (2012) 123-127.
[18] A.Y. Khereddine, F.H. Larbi, M. Kawasaki, T. Baudin, D. Bradai, T.G. Langdon, An examination of microstructural evolution in a Cu–Ni–Si alloy processed by HPT and ECAP, Materials Science and Engineering: A, 576 (2013) 149-155.
[19] J. Li, F. Li, C. Zhao, H. Chen, X. Ma, J. Li, Experimental study on pure copper subjected to different severe plastic deformation modes, Materials Science and Engineering: A, 656 (2016) 142-150.
[20] B. Omranpour, L. Kommel, F. Sergejev, J. Ivanisenko, M. Antonov, M.A. Hernandez-Rodriguez, E. Garcia-Sanchez, Analysis of the reciprocal wear testing of Aluminum AA1050 processed by a novel mechanical nanostructuring technique, in: IOP Conference Series: Materials Science and Engineering, IOP Publishing, 2021, pp. 012051.
[21] V. Tavakkoli, E. Boltynjuk, T. Scherer, A. Mazilkin, Y. Ivanisenko, T. Ungar, C. Kübel, Precipitate-mediated enhancement of mechanical and electrical properties in HPTE-processed Al–Mg–Si alloy, Materials Science and Engineering: A, 2024 pp. 146556.
[22] B. Omranpour, Y. Ivanisenko, R. Kulagin, L. Kommel, E.G. Sanchez, D. Nugmanov, T. Scherer, A. Heczel, J. Gubicza, Evolution of microstructure and hardness in aluminum processed by High Pressure Torsion Extrusion, Materials Science and Engineering: A, 762 (2019) 138074.
[23] D. Nugmanov, A. Mazilkin, H. Hahn, Y. Ivanisenko, Structure and tensile strength of pure Cu after high pressure torsion extrusion, Metals, 9(10) (2019) 1081.
[24] A. Bareggi, P. Boffi, S. Chinosi, S. Franchi Bononi, L. Guizzo, G. Lavecchia, M. Marzinotto, G. Mazzanti, G. Pozzati, Current and future applications of HPTE insulated cables systems, Cigrè Science & Engineering, 13 (2019) 34-44.
[25] E. Aghion, B. Bronfin, D. Eliezer, The role of the magnesium industry in protecting the environment, Journal of materials processing technology, 117(3) (2001) 381-385.
[26] D. Zhao, Z. Wang, M. Zuo, H. Geng, Effects of heat treatment on microstructure and mechanical properties of extruded AZ80 magnesium alloy, Materials & Design (1980-2015), 56 (2014) 589-593.
[27] T. Al-Samman, G. Gottstein, Room temperature formability of a magnesium AZ31 alloy: Examining the role of texture on the deformation mechanisms, Materials Science and Engineering: A, 488(1) (2008) 406-414.
[28] K. Kainer, F. Von Buch, The current state of technology and potential for further development of magnesium applications, Magnesium–alloys and technology, 2003 pp. 1-22.
[29] Y. Huang, R.B. Figueiredo, T. Baudin, F. Brisset, T.G. Langdon, Evolution of Strength and Homogeneity in a Magnesium AZ31 Alloy Processed by High‐Pressure Torsion at Different Temperatures, Advanced Engineering Materials, 14(11) (2012) 1018-1026.
[30] S.A. Alsubaie, P. Bazarnik, M. Lewandowska, Y. Huang, T.G. Langdon, Evolution of microstructure and hardness in an AZ80 magnesium alloy processed by high-pressure torsion, Journal of Materials Research and Technology, 5(2) (2016) 152-158.
[31] A. Al-Zubaydi, R.B. Figueiredo, Y. Huang, T.G. Langdon, Structural and hardness inhomogeneities in Mg–Al–Zn alloys processed by high-pressure torsion, Journal of Materials Science, 48 (2013) 4661-4670.
[32] G.M. Naik, S. Narendranath, S.S. Kumar, Effect of ECAP die angles on microstructure mechanical properties and corrosion behavior of AZ80 Mg alloy, Journal of Materials Engineering and Performance, 28 (2019) 2610-2619.
[33] S.A. Alsubaie, Y. Huang, T.G. Langdon, Hardness evolution of AZ80 magnesium alloy processed by HPT at different temperatures, Journal of Materials Research and Technology, 6(4) (2017) 378-384.