تحلیل کمانش غیرخطی نانو تیر تیموشنکو نیترید بور غیرمحلی براساس تئوری تنش کوپل اصلاح شده با استفاده از روش مربع سازی دیفرانسیلی

نوع مقاله : مقاله پژوهشی

نویسندگان

دانشکده مهندسی مکانیک، دانشگاه کاشان، کاشان، ایران

چکیده

در این مقاله تحلیل کمانش غیرخطی نانو تیر تیموشنکو غیر محلی نیترید بور بر بستر الاستیک با استفاده از تئوری تنش کوپل اصلاح‌شده براساس مدل الاستیسیته غیرمحلی ارینگن و تئوری غیرخطی هندسی ون کارمن مورد بررسی قرار می‌گیرد. معادلات حاکمه حرکت و شرایط مرزی با استفاده از اصل همیلتون بدست می‌آیند. به منظور حل معادلات غیرخطی حاکمه با روش تکرار مستقیم و به منظور جداسازی معادلات، از روش مربع‌سازی دیفرانسیلی استفاده می‌شود تا بتوان مقدار بار کمانش بحرانی را برای شرایط مرزی دوسرمفصل و یکسرگیردار-یکسرمفصل بدست آورد. نتایج حاصل از این تحقیق با نتایج بدست آمده توسط مورمو و همکاران مقایسه شده که تطابق بسیار خوبی بین آنها برقرار است. در نهایت تاثیر پارامترهایی همچون پارامتر غیرمحلی ارینگن، ضریب لاغرشدگی نانوتیر، ثابت فنری وینکلر، ثابت برشی پاسترناک، اثرات میدان الکتریکی، تغییرات دمایی و مقیاس طولی ماده روی مقدار بار کمانش بحرانی نانوتیر تیموشنکو غیر محلی مورد بررسی قرار می‌گیرد. نتایج حاصل از این تحقیق نشان می‌دهد که با افزایش پارامترهای غیر محلی ارینگن، ضریب لاغرشدگی، میدان الکتریکی و تغییرات دمایی، مقدار بار کمانش بحرانی کاهش می‌یابد و از طرفی دیگر مقدار بار کمانش بحرانی با افزایش ثابت فنری وینکلر، مدول برشی پاسترناک و پارامتر مقیاس طولی ماده افزایش پیدا می‌کند. لازم به ذکر است که میزان و نرخ کاهش و یا افزایش پارامترهای مذکور بسته به شرایط مرزی دوسر نانوتیر متفاوت است. ضمنا در تمامی موارد مورد مطالعه، مقدار بار کمانش بحرانی برای تیر دوسرمفصل کمتر از تیر یکسرگیردار-یکسرمفصل است.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Nonlinear Buckling Analysis of nonlocal Boron Nitride Timoshenko nano beam based on Modified couple stress theory using DQM

نویسندگان [English]

  • m. Mohammadimehr
  • s. Shahedi
Faculty of Mechanical Engineering, University of Kashan, Kashan, Iran
چکیده [English]

In this article, nonlinear buckling analysis of nonlocal boron nitride Timoshenko nano
beam on elastic foundation based on modified couple stress theory, nonlocal elasticity Eringen’s model,
and Von Karman nonlinear geometry theory are investigated. The governing equation of motion and
boundary conditions based on Hamilton’s principle are obtained. To solve the nonlinear governing
equation of motion, the differential quadrature method is used to obtain the critical buckling load for two
edges simply supported (S-S) and simply supported-clamped (S-C) boundary conditions. The results of
this research are compared with the obtained results by other researchers and there is a good agreement.
Finally, effects of various parameters such as nonlocal Eringen’s parameter, slenderness ratio of nano
beam, electric field, temperature changes and material length scale parameter on the nonlocal critical
buckling load of Timoshenko nano beam are examined. The results show that with increasing nonlocal
parameter, slenderness ratio, electric field, and temperature changes, the critical buckling load decreases.
Meanwhile, the critical buckling load for S-S boundary condition is lower than that of for S-C.

کلیدواژه‌ها [English]

  • Nonlinear buckling analysis Boron nitride nonlocal Timoshenko nano beam DQM Modified couple stress theory Elastic foundation
[1] A.C. Eringen, On differential equations of nonlocal elasticity and solutions of screw dislocation and surface waves, Journal of Applied Physics 54 (1983) 4703-4710.
[2] L.J. Sudak, Column buckling of multiwalled carbon nanotubes using nonlocal continuum mechanics, Journal of Applied Physics 94 (2003) 7281-7287.
[3] R. Ansari, S. Sahmani, Bending behavior and buckling of nanobeams including surface stress effects corresponding to different beam theories, International Journal of Engineering Science 49 (2011) 1244-1255.
[4] D. Kumar, C. Heinrich, A.M. Waas, Buckling analysis of carbon nanotubes modeled using nonlocal continuum theories, Journal of Applied Physics 103 (2008) 073521.
[5] J.N. Reddy, Nonlocal theories for bending, buckling and vibration of beams, International Journal of Engineering Science 45 (2007) 288-307.
[6] M.A. Eltaher, A. Khairy, A.M. Sadoun, Omar Fatema-Alzahraa, Static and buckling analysis of functionally graded Timoshenko nanobeams, Applied Mathematics and Computation 229 (2014) 283-295.
[7] M. Aydogdu, A general nonlocal beam theory: Its application to nanobeam bending, buckling and vibration, Physica E 41 (2009) 1651-1655.
[8] C.M. Wang, Y.Y. Zhang, S.S. Ramesh, S. Kitipornchai, Buckling analysis of micro-and nano-rods/tubes based on nonlocal Timoshenko beam theory, Journal of Physics D: Applied Physics 39 (2006) 3904-3909.
[9] C.M. Wang, Y.Y. Zhang, X.Q. He, Vibration of nonlocal Timoshenko beams, Nanotechnology 18(2007) 105401.
[10] J.K. Phadikar, S.C. Pradhan, Variational formulation and finite element analysis for nonlocal elastic nanobeams and nanoplates, Computational Materials Science 49 (2010) 492-499.
[11] T. Murmu, S.C. Pradhan, Buckling analysis of a single-walled carbon nanotube embedded in an elastic medium based on nonlocal elasticity and Timoshenko beam theory and using DQM, Physica E 41 (2009)1232-1239.
[12] J. Yang, L.L. Ke, S. Kitipornchai, Nonlinear free vibration of SWCNTs using nonlocal Timoshenko beam theory, Physica E 42 (2010) 1727-1735.
[13] H.T. Thai, A nonlocal beam theory for bending,buckling, and vibration of nanobeams, International Journal of Engineering Science 52 (2012) 56-64.
[14] A.H. Rahmati, M. Mohamadimehr, Vibration analysis of non-uniform and non-homogeneous boron nitride nanorods embedded in an elastic medium under combined loadings using DQM, Physica B: Condensed Matter 440 (2014) 88-98.
[15] M.H. Yas, N. Samadi, Free vibrations and buckling analysis of carbon nanotube-reinforced composite Timoshenko beams on elastic foundation, International Journal of Pressure Vessels and Piping 98 (2012)119-128.
[16] A. Ghorbanpour Arani, S. Amir, A.R. Shajari, M.R. Mozdianfard, Electro-thermo-mechanical buckling of DWBNNTs embedded in bundle of CNTs using nonlocal piezoelasticity cylindrical shell theory, Composite Part B: Engineering 43 (2012) 195-203.
[17] A. Ghorbanpour Arani, V. Atabakhshian, A. Loghman, A.R. Shajari, S. Amir, Nonlinear vibration of embedded SWBNNTs based on nonlocal Timoshenko beam theory using DQ method, Physica B 407 (2012) 2549-2555.
[18] M. Mohammadimehr, B. Rousta Navi, A. Ghorbanpour Arani, Free vibration of viscoelastic double-bonded polymeric nanocomposite plates reinforced by FGSWCNTs using MSGT, sinusoidal shear deformation theory and meshless method, Composite Structures 131(2015) 654-671.
[19] A. Salehi-Khojin, N. Jalili, Buckling of boron nitride nanotube reinforced piezoelectric polymeric composites subject to combined electro-thermo-mechanical loadings, Composites Science and Technology 68 (2008)1489-1501.
[20] M. Mohammad Abadi, A.R. Daneshmehr, An investigation of modified couple stress theory in buckling analysis of micro composite laminated Euler- Bernoulli and Timoshenko beams, International Journal of Engineering Science 75 (2014) 40-53.
[21] W. Chen, C. Weiwei , K.Y. Sze, A model of composite laminated Reddy beam based on a modified couple stress theory", Composite Structures 94 (2012) 2599- 2609.
[22] H.S. Shen, C.L. Zhang, Thermal buckling and postbuckling behavior of functionally graded carbon nanotube-reinforced composite plates, Material and Design 31 (2010) 3403-3411.
[23] L.L. Ke, J. Yang, S. Kitipornchai, M.A. Bradford,Bending, buckling and vibration of size-dependent functionally graded annular microplates, Composite Structures 94 (2012) 3250-3257.
[24] M. Mohammadimehr, A. R. Saidi, A. Ghorbanpour Arani, A. Arefmanesh, Q. Han , Buckling analysis of double-walled carbon nanotubes embedded in an elastic medium under axial compression using nonlocal Timoshenko beam theory, Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science 225 ( 2) (2011) 498-506.
[25] C. Shu , Differential Quadrature and its Application in Engineering, Springer, London, 2000.
[26] C. Shu, H. Du, Implementation of clamped and simply supported boundary conditions in the GDQ free vibration analysis of beams and plates, J of Sound and Vibration 34 (1997) 819-835.
[27] M. Mohammadimehr, A. A. Monajemi, M. Moradi, Vibration analysis of viscoelastic tapered micro-rod based on strain gradient theory resting on visco-pasternak foundation using DQM, Journal of Mechanical Science and Technology 29 ( 6) (2015) 2297-2305.
[28] M. Mohammadimehr, M. Salemi, B. Rousta Navi,Bending, buckling, and free vibration analysis of MSGT microcomposite Reddy plate reinforced by FG-SWCNTs with temperature- dependent material properties under hydro-thermo-mechanical loadings using DQM, Composite Structures 138 (2016) 361-380.