Spatial Elasticity Tensor in Eulerian Rate Type Constitutive Equations

Document Type : Research Article

Authors

Abstract

In finite deformation analysis, the use of constitutive equations in rate form is often required. In a spatial setting, elastic modulus tensor relates some objective rate of a spatial stress tensor to the rate of deformation. It is important to know that, the spatial elastic modulus tensors of a material in different constitutive equations differ and relation between them may be interest for some researchers. In this paper, a general explicit formulation between the spatial elastic modulus tensors of some constitutive equations expressed. This formulation is a function of left Cauchy-Green tensor and its eigenvectors.

Keywords


[1] Pinsky, P.M., Oritz, M., Pister, K.S.; “Numerical integration of rate constitutive equations in finite deformation analysis ”, Computer Methods in Applied Mechanics and Engineering, No. 40, PP.137-158, 1983.
[2] Xiao, H., Bruhns, O.T., Meyers, A.; “Logarithmic strain, logarithmic spin and logarithmic rate ”, Acta
Mechanica, No. 124, PP. 89-105, 1997.
[3] Xiao, H., Bruhns, O.T., Meyers, A.; “Hypo- elasticity model based upon the logarithmic stress rate ”, Journal of Elasticity, No. 47, PP. 51-68,1997.
[4] Xiao, H., Bruhns, O.T., Meyers, A.; “Strain rates and material spins ”, Journal of Elasticity, No. 52, PP.1-42, 1998.
[5] Xiao, H., Bruhns, O.T., Meyers, A.; “On objective corotational rates and their defining spin tensors”,International Journal of Solid and Structures, No.35, PP. 4001-4014, 1995.
[6] Xiao, H., Bruhns, O.T., Meyers, A.; “Elastoplasticity beyond small deformation: Basic variables,essential structures, and constitutive and computational implication ”, Acta Mechanica, No.182, PP. 31-111, 2006.
[7] Zaremba, S.; “Sur une forme perfectionee de la theorie de la relaxation”, Bull. Intern. Acad. Sci.Cracovie, PP. 594-614, 1903.
[8] Jaumann, G.; “Geschlossenes System physikalischer differentialgesetze”, Akad. Wiss. Wien Sitzber. IIa, No. 120, PP. 594-614, 1911.
[9] Green, A. E., Naghdi, P. M. ; “Ageneral Theory of an elastic-plastic continuum”, Arch. Rat. Mech.
Anal. , No. 18, PP. 251-281, 1965.
[10] Truesdell, C., Noll, W.; “The nonlinear field theories of mechanics ”, Handbuch der Physik,
volume III/3. Springer, Berlin, PP, 441-447, 1965.
[11] Cotter, B.A., Rivlin, R.S.; “Tensors associated with time-dependent stress ”, Quart. Appl. Math., No. 13,
PP. 177-182, 1955.
[12] Oldroyd, J. G.; “On the formulation of rheological equation of state ”, Proc. Roy. Soc. London Ser. A,
No. 200, PP. 523-541, 1950.
[13] Belytschko, T., Liu, W.K., Moran, B.; “Nonlinear finite elements for continua and structures ”, New York: John Wiley & Sons; 2001.
[14] Xiao, H. ; “Unified explicit basis-free expressions for time rate and conjugate stress of an arbitrary Hill's strain ”, International Journal of Solid and Structures, No. 32, PP. 3327-3347, 1995.
[15] Szabo, L., Balla, M.; “Comparison of some stress rates ”, International Journal of Solid and
Structures, No. 25, PP. 279-297, 1989.
[16] Abbasi, B., Parsa, M.H.; “Finite element study of the energy dissipation and residual stresses in the closed elastic deformation path”, International Journals for Numerical Methods in Engineering, No PP, 2006.
[17] بیژن عباسی خزائی، محمد حبیبی پارسا، " مدلهای هیپوالاستیسیته و انتگرال پذیری آنها "، نشریه علمی پژوهشی دانشکده فنی دانشگاه تهران، سال چهل و یکم شماره 8 (پیاپی 110) صفحه 1011، 1386