[1] F.j. Plantema, “Sandwich Construction”, John Wily & Sons, New York, 1966.
[2] H.G. Allen, “Analysis and Design of Structural Sandwich Panels”, Pergamon Press, Oxford, 1969.
[3] D. Zenkert, “An Intoduction to Sandwich Construction. Chameleon Press Ltd”, London, 1995.
[4] A.K. Noor, W.S. Burton, C.W. Bert, “Computional models for sandwich panels and shells”, Applied Mechanics Reviews 49,155-199, 1996.
[5] L. Librescu, T. Hause, “Recent developments in the modeling and behavior of advanced sandwich constructions: a survey”, Composite Structures 48 (1), 1-17, 2000.
[6] Reissner, E.; “The Effects of Transverse Shear Deformation on the Bending of Elastic Plates”, ASME Journal of Applied Mechanics, vol. 67, p.p. 69-77, 1945.
[7] Mindlin, R. D.; “Influence of Rotary Inertia and Shear on Flexural Motion of Isotropic Elastic Plates”, ASME Journal of Applied Mechanics, vol. 73, p.p. 69-77, 1951.
[8] Whitney, J.; M., Pagano, N. J.; ” Shear Deformation in Heterogeneous Anisotropic Plates”, Journal of Applied Mechanics, vol. 92, p.p. 1031-1036, 1970.
[9] Zhen, W.; Wanji , C.; “Free vibration of laminated composite and sandwich plates using global-local higher-order theory”, Journal of Sound and Vibration, vol. 298, p.p. 333–349, 2006.
[10] J.N. Reddy, “A simple higher-order theory for laminated composite plates”, J Appl Mech 51,745-52, 1984.
[11] Li, X. Y.; Liu, D.; “Generalized laminate theories based on double superposition hypothesis”, J Numerical Methods Engineering, vol. 40 , p.p. 1197–1212, 1997.
[12] Zhen, W.; Ronggeng, C.; Wanji, C.; “Refined laminated composite plate element based on global-local higher-order shear deformationtheory”, Composite Structrues, vol. 70 , p.p. 135–152, 2005.
[13] Zhen, W.; Wanji, C.; “An efficient higher-order theory and finite element for laminated plates subjected to thermal loading”, CompositeStructures vol. 73 , p.p. 99–109, 2006.
[14] Frostig, Y.; Thomsen, O. T.; “High-order free vibration of sandwich panels with a flexible core”, J Solid and Structures,vol. 41, pp. 1697-1724, 2004.
[15] Malekzadeh, K.; Khalili, M. R.; Mittal, R. K.; “Local and Global Damped Vibrations of Plates with a Viscoelastic Soft Flexible Core: An Improved High-order Approach”, Journal of Sandwich Structures and Materials, vol. 7, p.p. 431-456, 2005.
[16] Khalili, M.R.; Malekzadeh, K; Mittal, R.K.; “Effect and physical and geometrical parameters on transverse low-velocity impact response of sandwich panels with a transversely flexible core”, Journal of Composite Structures, vol. 77, pp. 430-443, 2007.
[17] Meunier, M.; Shenoi, RA.; “ Free vibration analysis of composite sandwich plates”, Proc ImechE, Part C: J Mech Engng Sci , vol. 213(7), p.p. 715–27, 1999.
[18] Nayak, A.K .; Moy, S.S.J.; Shenoi, R.A.; “Free vibration analysis of composite sandwich plates based on Redd’s higher-order theory”, Composit: Part B, vol. 33, p.p. 505-519, 2002.