[1] Brockett, R.W.; “Asymptotic Stability and Feedback Stabilization”, Differential Geometric Control Theory, R.W. Brockett, R.S. Millman, and H.J. Sussmann (Editors), Birkhauser, Boston, pp. 181-191, 1983.
[2] Bloch, A. M.; Reyhanoglu, M.; McClamroch, and N. H.; “Control and Stabilization of Nonholonomic Dynamic Systems”, IEEE Trans. on Automat Control, Vol. 37, p.p.1746-1757, 1992.
[3] Samson, C.; “Time-varying Feedback Stabilization Control of a Car-Like Wheeled Mobile Robot”, Int.J. of Robotics Research, Vol. 12, p.p. 55-66, 1993.
[4]Samson, C.; “Control of Chained Systems Application to Path Following and Time-Varying Point-Stabilization of Mobile Robots”, IEEE Trans.on Automat Control, Vol. 40, p.p. 64-77, 1995.
[5] Bloch, A. M.; McClamroch, N. H.; and Reyhanoglu, M.; “Controllability and Stabilizability Properties of a Nonholonomic Control System”, Proc. of 29th IEEE Int. Conf. on Decision and Control, Hawaii,p.p. 1312-1314, 1990.
[6] Canudas de Wit, C.; and Sørdalen, O. J.; “Exponential Stabilization of Mobile Robots with Nonholonomic Constraints”, IEEE Trans. On Automatic Control, Vol. 37, p.p. 1791-1797, 1992.
[7] Guldner, J.; and Utkin, V. I.; “Stabilization of Nonholonomic Mobile Robots Using Lyapunov Function for Navigation and Sliding Mode Control”,Proc. of 33rd IEEE Int. Conf. on Decision and Control, p.p. 2967-2972, 1994.
[8] Astolfi, A.; “Discontinuous Control of Nonholonomic Systems”, System & Control Letters, Vol. 27, p.p. 37-45, 1996.
[9] Pourboghrat, F.; “Exponential Stabilization of Nonholonomic Mobile Robots”, Computers and Electrical Engineering, Vol. 28, p.p. 349–359, 2002.
[10] Dong, W.; Liang Xu, W.; and Huo, W.; “Trajectory Tracking Control of Dynamic Nonholonomic Systems with Unknown Dynamics”, Int. J. of Robust and Nonlinear Control Vol. 9, p.p. 905-922,1999.
[11] Ge, S. S.; Wang, J.; Lee, T. H.; and Zhou, G. Y.; “Adaptive Robust Stabilization of Dynamic Nonholonomic Chained Systems”, J. of Robotic Systems, Vol. 18, p.p. 119-133, 2000.
[12] Kim, M. S.; Shin, J. H.; Hong, S. G.; and Lee, J. J.; “Designing a Robust Adaptive Dynamic Controller for Nonholonomic Mobile Robots Under Modeling Uncertainty and Disturbances”, Mechatronics, Vol.13, p.p. 507-519, 2003.
[13] Dong, W.; and Kuhnert, K. D.; “Robust Adaptive Control of Nonholonomic Mobile Robot with Parameter and Nonparameter Uncertainties”, IEEE Trans. on Robotics, vo. 21, p.p. 261-266, 2005.
[14] Ma, B. L.; and Tso, S. K.; “Robust Discontinuous Exponential Regulation of Dynamic Nonholonomic Wheeled Mobile Robots with Parameter Uncertainties”, Int. J. of Robust and Nonlinear Control, Vol. 18, p.p. 960-974, 2007.
[15] Mauder, M.; “Robust Tracking Control of Nonholonomic Dynamic Systems with Application to The Bi-Steerable Mobile Robot”, Automatica Vol. 44, p.p. 2588–2592, 2008.
[16] Chen, C. Y.; Li, T. S.; Yeh, Y. C.; and Chang, C. C.; “Design and Implementation of an Adaptive Sliding-Mode Dynamic Controller for Wheeled Mobile Robots”, Mechatronics, Vol. 19, p.p. 156-166, 2009.
[17] Corradini, M. L.; Leo, T.; and Orlando, G.; “Robust Stabilization of Mobile Robot Violating The Nonholonomic Constraint Via Quasi-Sliding Modes”, Proc. of American Control Conference,San Diego, California, p.p. 3935-3939, 1999.
[18] Dixon, W. E.; Dawson, D. M.; Zergeroglu, E.; and Behal, A.; Nonlinear Control of Wheeled Mobile Robots, 1st Edition, Springer-Verlag, 2001.
[19] Kozlowski, K.; and Pazderski, D.; “Practical Stabilization of a Skid-Steering Mobile Robot- A Kinematic-Based Approach”, IEEE 3rd Int. Conference on Mechatronics, Budapest, p.p. 519-524, 2006.
[20] Pazderski, D.; and Kozłowski, K.; “Trajectory Tracking of Underactuated Skid-Steering Robot”, American Control Conference, Washington, USA, p.p. 3506-3511, 2008.
[21] Leroquais, W.; and d'Andrea-Novel, B.; “Modeling and Control of Wheeled Mobile Robots Not Satisfying Ideal Velocity Constraints: The Unicycle Case”, Proc. of 35th Conf. on Decision and Control, Kobe, Japan, p.p. 1437-1442, 1996.
[22] Motte, I.; and Campion, G.; “A Slow Manifold Approach for The Control of Mobile Robots Not Satisfying The Kinematic Constraints”, IEEE Trans. on Robotics and Automation, Vol. 16, p.p. 875-880, 2000.
[23] Wang, Z. P.; Su, C. Y.; Lee, T. H.; and Ge, S. S.; “Robust Adaptive Control of a Wheeled Mobile Robot Violating The Pure Nonholonomic Constraint”, 8th Int. Conf. on Control, Automation, Robotics and Vision, Kumming, China, p.p. 987-992, 2004.
[24] Lewis, F.; Abdallah, C.; and Dawson, D.; Control of Robot Manipulators, 1st Edition, MacMillan Publishing Co., 1993.
[25] Ward, C. C.; and Iagnemma, K.; “A Dynamic-Model-Based Wheel Slip Detector for Mobile Robots on Outdoor Terrain”, IEEE Trans. on Robotics, Vol. 24, p.p. 821-831, 2008.
[26] Dawson, D. M.; Hu, J.; and Burg, T. C.; Nonlinear Control of Electric Machinery, 1st Edition, Marcel Dekker Inc., 1998.