[1] A. Sinha, D. Bogard, M. Crawford, Film-cooling effectiveness downstream of a single row of holes with variable density ratio, ASME J. Turbomach, 113(3) (1991) 442-449.
[2] J. Pietrzyk, D. Bogard, M. Crawford, Hydrodynamic measurements of jets in crossflow for gas turbine film cooling applications, ASME J. Turbomach, 111(2) (1989)139-145.
[3] D.K. Walters, J.H. Leylek, Impact of film–cooling jets on turbine aerodynamic losses, in: ASME , Journal of turbomechinary, American Society of Mechanical Engineers, 2000, pp. 537-545.
[4] M. Naghashnejad, N. Amanifard, H. Deylami, A predictive model based on a 3-D computational approach for film cooling effectiveness over a flat plate using GMDH-type neural networks, Heat and Mass Transfer, 50(1) (2014)139-149.
[5] A. Bergles, Techniques to enhance heat transfer, Handbook of heat transfer, 3 (1998) 11.11-11.76.
[6] T.C. Corke, M.L. Post, D.M. Orlov, Single-dielectric barrier discharge plasma enhanced aerodynamics:concepts, optimization, and applications, Journal of Propulsion and Power, 24(5) (2008) 935-945.
[7] Y. Suzen, P. Huang, J. Jacob, D. Ashpis, Numerical simulations of plasma based flow control applications, AIAA paper, 4633 (2005) 2005.
[8] B. Jayaraman, Y. Lian, W. Shyy, Low-Reynolds number flow control using dielectric barrier discharge actuators, AIAA paper, 3974 (2007).
[9] B. Jayaraman, W. Shyy, Modeling of dielectric barrier discharge-induced fluid dynamics and heat transfer, Progress in Aerospace Sciences, 44(3) (2008) 139-191.
[10] M. Malik, L. Weinstein, M. Hussaini, Ion Wind Drag Reduction, AIAA paper, 0231 (1983).
[11] M. Forte, J. Jolibois, J. Pons, E. Moreau, G. Touchard, M.Cazalens, Optimization of a dielectric barrier discharge actuator by stationary and non-stationary measurements of the induced flow velocity: application to airflow control, Experiments in Fluids, 43(6) (2007) 917-928.
[12] S. Seyyed ShamsTaleghani, A. Shadaram, M. Mirzaee, Experimental investigation of geometric and electrical characteristics by measurements of the induced flow velocity, (2013) 132-145(in Persian).
[13] A. Rafi, N. Amanifard, H.M. Deylami, F. Dolati, Numerical investigation of the plasma actuator effects on the flow field and heat transfer coefficient in a flat channel, Modares Mechanical Engineering, 15(6) (2015)(in Persian).
[14] C.-C. Wang, S. Roy, Active cooling of turbine blades using horse-shoe plasma actuator, AIAA Paper, 679 (2009) 2009.
[15] C.-C. Wang, S. Roy, Physics based analysis of horseshoe plasma actuator for improving film cooling effectiveness, AIAA Paper, 1092 (2010) 2010.
[16] J.-L. Yu, L.-m. He, Y.-f. Zhu, W. Ding, Y.-q. Wang, Numerical simulation of the effect of plasma aerodynamic actuation on improving film hole cooling performance, Heat and Mass Transfer, 49(6) (2013) 897-906.
[17] B. Launder, B. Sharma, Application of the energydissipation model of turbulence to the calculation of flow near a spinning disc, Letters in heat and mass transfer,1(2) (1974) 131-137.