[1] G.A. Buxton, R. Verberg, D. Jasnow, A.C. Balazs, Newtonian fluid meets an elastic solid: Coupling lattice Boltzmann and lattice-spring models, Physical Review E, 71(5) (2005) 056707.
[2] R.M. MacMeccan, J.R. Clausen, G.P. Neitzel, C.K. Aidun, Simulating deformable particle suspensions using a coupled lattice-Boltzmann and finite-element method, Journal of Fluid Mechanics, 618 (2009) 13-39.
[3] C.S. Peskin, Flow patterns around heart valves: A numerical method, Journal of Computational Physics, 10(2) (1972) 252-271.
[4] C.S. Peskin, Numerical analysis of blood flow in the heart, Journal of Computational Physics, 25(3) (1977) 220-252.
[5] A. Gilmanov, F. Sotiropoulos, E. Balaras, A general reconstruction algorithm for simulating flows with complex 3D immersed boundaries on Cartesian grids, Journal of Computational Physics, 191(2) (2003) 660-669.
[6] B. Afra, M. Nazari, M.H. Kayhani, A.A. Delouei, G. Ahmadi, An immersed boundary-lattice Boltzmann method combined with a robust lattice spring model for solving flow–structure interaction problems, Applied Mathematical Modelling, 55 (2018) 502-521.
[7] A. Amiri Delouei, M. Nazari, M.H. Kayhani, S. Succi, Non-Newtonian unconfined flow and heat transfer over a heated cylinder using the direct-forcing immersed boundary--thermal lattice Boltzmann method, Physical Review E, 89(5) (2014) 053312.
[8] S.K. Kang, Y.A. Hassan, A comparative study of direct-forcing immersed boundary-lattice Boltzmann methods for stationary complex boundaries, International Journal for Numerical Methods in Fluids, 66(9) (2011) 1132-1158.
[9] A.A. Delouei, M. Nazari, M.H. Kayhani, S. Succi, Immersed Boundary – Thermal Lattice Boltzmann Methods for Non-Newtonian Flows Over a Heated Cylinder: A Comparative Study, Communications in Computational Physics, 18(2) (2015) 489-515.
[10] D. Goldstein, R. Handler, L. Sirovich, Modeling a No-Slip Flow Boundary with an External Force Field, Journal of Computational Physics, 105(2) (1993) 354-366.
[11] E.M. Saiki, S. Biringen, Numerical Simulation of a Cylinder in Uniform Flow: Application of a Virtual Boundary Method, Journal of Computational Physics, 123(2) (1996) 450-465.
[12] J. Mohd-Yusof, Combined immersed-boundary/B-spline methods for simulations of flow in complex geometries, Annual Research Briefs. NASA Ames Research Center= Stanford University Center of Turbulence Research: Stanford, (1997) 317-327.
[13] E.A. Fadlun, R. Verzicco, P. Orlandi, J. Mohd-Yusof, Combined Immersed-Boundary Finite-Difference Methods for Three-Dimensional Complex Flow Simulations, Journal of Computational Physics, 161(1) (2000) 35-60.
[14] A.L.F. Lima E Silva, A. Silveira-Neto, J.J.R. Damasceno, Numerical simulation of two-dimensional flows over a circular cylinder using the immersed boundary method, Journal of Computational Physics, 189(2) (2003) 351-370.
[15] Z.-G. Feng, E.E. Michaelides, The immersed boundary-lattice Boltzmann method for solving fluid–particles interaction problems, Journal of Computational Physics, 195(2) (2004) 602-628.
[16] M.-C. Lai, C.S. Peskin, An Immersed Boundary Method with Formal Second-Order Accuracy and Reduced Numerical Viscosity, Journal of Computational Physics, 160(2) (2000) 705-719.
[17] Z.-G. Feng, E.E. Michaelides, Proteus: a direct forcing method in the simulations of particulate flows, Journal of Computational Physics, 202(1) (2005) 20-51.
[18] X.D. Niu, C. Shu, Y.T. Chew, Y. Peng, A momentum exchange-based immersed boundary-lattice Boltzmann method for simulating incompressible viscous flows, Physics Letters A, 354(3) (2006) 173-182.
[19] A. Dupuis, P. Chatelain, P. Koumoutsakos, An immersed boundary–lattice-Boltzmann method for the simulation of the flow past an impulsively started cylinder, Journal of Computational Physics, 227(9) (2008) 4486-4498.
[20] J. Wu, C. Shu, Implicit velocity correction-based immersed boundary-lattice Boltzmann method and its applications, Journal of Computational Physics, 228(6) (2009) 1963-1979.
[21] A. Amiri Delouei, M. Nazari, M.H. Kayhani, S.K. Kang, S. Succi, Non-Newtonian particulate flow simulation: A direct-forcing immersed boundary–lattice Boltzmann approach, Physica A: Statistical Mechanics and its Applications, 447 (2016) 1-20.
[22] Z. Guo, C. Zheng, B. Shi, Discrete lattice effects on the forcing term in the lattice Boltzmann method, Physical Review E, 65(4) (2002) 046308.
[23] W.T. Ashurst, W.G. Hoover, Microscopic fracture studies in the two-dimensional triangular lattice, Physical Review B, 14(4) (1976) 1465-1473.
[24] A. Hrennikoff, Solution of problems of elasticity by the framework method, Journal of applied mechanics, 8 (1941), 169-175.
[25] A.B. Gavin, M.C. Christopher, J.C. Douglas, A lattice spring model of heterogeneous materials with plasticity, Modelling and Simulation in Materials Science and Engineering, 9(6) (2001) 485.
[26] L. Monette, M.P. Anderson, Elastic and fracture properties of the two-dimensional triangular and square lattices, Modelling and Simulation in Materials Science and Engineering, 2(1) (1994) 53.
[27] G.N. Hassold, D.J. Srolovitz, Brittle fracture in materials with random defects, Physical Review B, 39(13) (1989) 9273-9281.
[28] A. Parisi, G. Caldarelli, Self-affine properties of fractures in brittle materials, Physica A: Statistical Mechanics and its Applications, 280(1) (2000) 161-165.
[29] G.-F. Zhao, J. Fang, J. Zhao, A 3D distinct lattice spring model for elasticity and dynamic failure, International Journal for Numerical and Analytical Methods in Geomechanics, 35(8) (2011) 859-885.
[30] T. Omori, T. Ishikawa, D. Barthès-Biesel, A.V. Salsac, J. Walter, Y. Imai, T. Yamaguchi, Comparison between spring network models and continuum constitutive laws: Application to the large deformation of a capsule in shear flow, Physical Review E, 83(4) (2011) 041918.
[31] C.S. Peskin, The immersed boundary method, Acta Numerica, 11 (2003) 479-517.
[32] A. M. Kosevich, E. M. Lifshitz, L. D. Landau, and L. P. Pitaevskii, Theory of elasticity , ed: Butterworth-Heinemann, Burlington, MA, (1986).
[33] S.C.R. Dennis, W. Qiang, M. Coutanceau, J.L. Launay, Viscous flow normal to a flat plate at moderate Reynolds numbers, Journal of Fluid Mechanics, 248 (2006) 605-635.
[34] K.M. In, D.H. Choi, M.U. Kim, Two-dimensional viscous flow past a flat plate, Fluid Dynamics Research, 15(1) (1995) 13.