شبیه سازی دوفازی فرایند تشکیل فوم فلزی آلومینیوم A356 بروش شبکه بولترمان

نوع مقاله : مقاله پژوهشی

نویسندگان

دانشکده معدن و متالورژی، دانشگاه صنعتی امیرکبیر، تهران، ایران

چکیده

هدف از پژوهش حاضر توسعه کد شبیه سازی دو فازی جوانه زنی و رشد حباب در مذاب آلیاژ آلومینیم A356 طی فرایند تولید فوم فلزی به روش فرمگریپ می‌باشد. به این منظور ابتدا، با استفاده از روش شبیه سازی عددی شبکه بولتزمان، مدل شان چن در دینامیک حباب‌ها برای مذاب فلزات توسعه داده شده و الگوریتم‌های پساده شده و معادلات حاکم بر فرایند فومسازی همگی به روش عددی شبکه بولتزمان گسسته سازی و حل شدند. ساختار سلولی فوم پس از انجماد با استفاده از کد توسعه داده شده در شرایط مختلف پیش بینی شد. نتایج حاصل از شبیه ساری که مشابه ساختار متخلخل فوم آلومینیم است، با نتایج متالوگرافی ساختار سلولی حاصل از تهیه نمونه‌های واقعی فوم آلومینیم A356 در سه دمای 675 ، 725 و 775 درجه سلسیوس مقایسه شد. این مقایسه نشان می‌دهد که نتایج متالوگرافی شبیه سازی شده به کمک کد حاضر با نتایج متالوگرافی واقعی از نظر کیفی و ظاهری کاملا مشابه هستند و بهترین همخوانی از نظر کمی نیز از لحاظ توزیع و اندازه حباب، در نمونه تولید شده در دمای 675 درجه سلسیوس دیده شده است. لذا کد حاضر می‌تواند ابزاری سودمند برای تهیه متالوگرافی مجازی فوم‌های آلومینیمی؛ به منظور ارزیابی ساختار سلولی آنها در هر دمای فومسازی، باشد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Multiphase Simulation of Aluminum A356 Metal Foam Formation Process by Lattice Boltzmann Method

نویسندگان [English]

  • H. Bayani
  • S.M.H. Mirbagheri
Department of Mining and Metallurgy Engineering, Amirkabir University of Technology, Tehran, Iran
چکیده [English]

In this study simulation of a two phase bubble nucleation and growth in aluminum A356 in form grip metal foam process was investigated by two steps. At first for modifying current shanchem methos two inline bubble interaction is studied and then two inline bubble integration detail was investigated. Finaly more than two bubble interaction and integration in molten metal environment studied. Results show an interesting difference in bubbles interactions in molten metal compared two other environments. For this purpose at first, for bubble dynamics in molten metals modeling shan-chen model is used. After discretization of problem equation and all alghorithms impelementation, lattice Boltzmann method was used to numerically solve process discrited equations in all domain. By using the developed code in this research cellular structure of metal foam after solidification is predicted in different temperature. Simulated porous structures were compared with metallographic samples of foamed A356 aluminum at 675, 725 and 775 . The results visualy are very similar to actual samples and also the compesion between virtual and actual samples shows best fit in distribution and mean bubbles size between simulation results of current code and metallographic results of actual sample at 675 . Therefore, the current code could be a useful tool for prediction of aluminum foams cellular structure.

کلیدواژه‌ها [English]

  • Aluminum A356
  • Form Grip
  • Lattice Boltzmann method
  • Shan-Chen model
  • Multiphase fluid dynamic
[1] A. Güner, M. Merih Arıkan, M. Nebioglu, New Approaches to Aluminum Integral Foam Production with Casting Methods, 2015.
[2] C. Körner, Integral Foam Molding of Light Metals, Springer, 2008.
[3] J. Banhart, Manufacture, characterisation and application of cellular metals and metal foams, Progress in Materials Science, 46(6) (2001) 559-632.
[4] J. Banhart, Manufacturing routes for metallic foams, JOM, 52(12) (2000) 22-27.
[5] J. Banhart, J. Baumeister, M. Weber, Powder Metallurgical Technology for the Production of Metallic Foams, 1995.
[6] D. Anderl, M. Bauer, C. Rauh, U. Rude, A. Delgado, Numerical simulation of adsorption and bubble interaction in protein foams using a lattice Boltzmann method, Food Funct, 5(4) (2014) 755-763.
[7] C. Körner, Foam formation mechanisms in particle suspensions applied to metal foams, Materials Science and Engineering: A, 495(1) (2008) 227-235.
[8] M. Thies, Lattice Boltzmann Modeling with Free Surfaces Applied to Formation of Metal Foams, PhD, University of Erlangen, Nurenberg, 2005.
[9] G. McNamara, G. Zanetti, Use of the Boltzmann equation to simulate lattice gas automata, Physical Review Letters, 61 (1988) 2332–2335.
[10] H. Stanzick, M. Wichmann, J. Weise, L. Helfen, T. Baumbach, J. Banhart, Process Control in Aluminum Foam Production Using Real-Time X-ray Radioscopy, Advanced Engineering Materials, 4(10) (2002) 814-823.
[11] K. Oguchi, M. Enoki, N. Hirata, Numerical Simulation for Cavitation Bubble Near Free Surface and Rigid Boundary, MATERIALS TRANSACTIONS, 56(4) (2015) 534-538.
[12] B.Z. Hong, L.K. Keong, A.M. Shariff, CFD modelling of most probable bubble nucleation rate from binary mixture with estimation of components’ mole fraction in critical cluster, Continuum Mechanics and Thermodynamics, 28(3) (2016) 655-668.
[13] C.E. Brennen, Cavitation and bubble dynamics, Oxford University Press, 1995.
[14] P. Lutze, J. Ruge, Wasserstoff in Aluminium und seinen Legierungen (Hydrogen in aluminium and its alloys), Metall Wirtschaft, 44(8) (1990) 741-748.
[15] W. Eichenauer, J. Makropoulus, Wasserstoff in flüssigem Aluminium, Zeitschrift für Metallkunde, 65 (1974) 649–652.
[16] M.J. Krause, Open source lattice Boltzmann code in, Karlsruhe Institute of Technology, 2016.
[17] S. Succi, The Lattice Boltzmann Equation For Fluid Dynamics and Beyond, Oxford University Press, 2001.
[18] A.K. Gunstensen, D.H. Rothman, S. Zaleski, G. Zanetti, Lattice Boltzmann model of immiscible fluids, Physical Review A, 43(8) (1991) 4320-4327.
[19] X. Shan, H. Chen, Simulation of nonideal gases and liquid-gas phase transitions by the lattice Boltzmann equation, Physical Review E, 49(4) (1994) 2941-2948.
[20] X. Shan, H. Chen, Lattice Boltzmann model for simulating flows with multiple phases and components, Physical Review E, 47(3) (1993) 1815-1819.
[21] M.R. Swift, E. Orlandini, W.R. Osborn, J.M. Yeomans, Lattice Boltzmann simulations of liquid-gas and binary fluid systems, Physical Review E, 54(5) (1996) 5041-5052.
[22] M.R. Swift, W.R. Osborn, J.M. Yeomans, Lattice Boltzmann Simulation of Nonideal Fluids, Physical Review Letters, 75(5) (1995) 830-833.
[23] X. He, X. Shan, G.D. Doolen, Discrete Boltzmann equation model for nonideal gases, Physical Review E, 57(1) (1998) R13-R16.
[24] P. Yuan, L. Schaefer, Equations of State in a lattice Boltzmann model, Physics of Fluids, 18 (2006) 42101-42111.
[25] A. Kuzmin, J. Derksen, Shan-chen multiphase model, in, University of Alberta, 2011.
[26] C. Körner, M. Arnold, R.F. Singer, Metal foam stabilization by oxide network particles, Materials Science & Engineering A, 396(1-2) (2005) 28-40.