[1] A. Güner, M. Merih Arıkan, M. Nebioglu, New Approaches to Aluminum Integral Foam Production with Casting Methods, 2015.
[2] C. Körner, Integral Foam Molding of Light Metals, Springer, 2008.
[3] J. Banhart, Manufacture, characterisation and application of cellular metals and metal foams, Progress in Materials Science, 46(6) (2001) 559-632.
[4] J. Banhart, Manufacturing routes for metallic foams, JOM, 52(12) (2000) 22-27.
[5] J. Banhart, J. Baumeister, M. Weber, Powder Metallurgical Technology for the Production of Metallic Foams, 1995.
[6] D. Anderl, M. Bauer, C. Rauh, U. Rude, A. Delgado, Numerical simulation of adsorption and bubble interaction in protein foams using a lattice Boltzmann method, Food Funct, 5(4) (2014) 755-763.
[7] C. Körner, Foam formation mechanisms in particle suspensions applied to metal foams, Materials Science and Engineering: A, 495(1) (2008) 227-235.
[8] M. Thies, Lattice Boltzmann Modeling with Free Surfaces Applied to Formation of Metal Foams, PhD, University of Erlangen, Nurenberg, 2005.
[9] G. McNamara, G. Zanetti, Use of the Boltzmann equation to simulate lattice gas automata, Physical Review Letters, 61 (1988) 2332–2335.
[10] H. Stanzick, M. Wichmann, J. Weise, L. Helfen, T. Baumbach, J. Banhart, Process Control in Aluminum Foam Production Using Real-Time X-ray Radioscopy, Advanced Engineering Materials, 4(10) (2002) 814-823.
[11] K. Oguchi, M. Enoki, N. Hirata, Numerical Simulation for Cavitation Bubble Near Free Surface and Rigid Boundary, MATERIALS TRANSACTIONS, 56(4) (2015) 534-538.
[12] B.Z. Hong, L.K. Keong, A.M. Shariff, CFD modelling of most probable bubble nucleation rate from binary mixture with estimation of components’ mole fraction in critical cluster, Continuum Mechanics and Thermodynamics, 28(3) (2016) 655-668.
[13] C.E. Brennen, Cavitation and bubble dynamics, Oxford University Press, 1995.
[14] P. Lutze, J. Ruge, Wasserstoff in Aluminium und seinen Legierungen (Hydrogen in aluminium and its alloys), Metall Wirtschaft, 44(8) (1990) 741-748.
[15] W. Eichenauer, J. Makropoulus, Wasserstoff in flüssigem Aluminium, Zeitschrift für Metallkunde, 65 (1974) 649–652.
[16] M.J. Krause, Open source lattice Boltzmann code in, Karlsruhe Institute of Technology, 2016.
[17] S. Succi, The Lattice Boltzmann Equation For Fluid Dynamics and Beyond, Oxford University Press, 2001.
[18] A.K. Gunstensen, D.H. Rothman, S. Zaleski, G. Zanetti, Lattice Boltzmann model of immiscible fluids, Physical Review A, 43(8) (1991) 4320-4327.
[19] X. Shan, H. Chen, Simulation of nonideal gases and liquid-gas phase transitions by the lattice Boltzmann equation, Physical Review E, 49(4) (1994) 2941-2948.
[20] X. Shan, H. Chen, Lattice Boltzmann model for simulating flows with multiple phases and components, Physical Review E, 47(3) (1993) 1815-1819.
[21] M.R. Swift, E. Orlandini, W.R. Osborn, J.M. Yeomans, Lattice Boltzmann simulations of liquid-gas and binary fluid systems, Physical Review E, 54(5) (1996) 5041-5052.
[22] M.R. Swift, W.R. Osborn, J.M. Yeomans, Lattice Boltzmann Simulation of Nonideal Fluids, Physical Review Letters, 75(5) (1995) 830-833.
[23] X. He, X. Shan, G.D. Doolen, Discrete Boltzmann equation model for nonideal gases, Physical Review E, 57(1) (1998) R13-R16.
[24] P. Yuan, L. Schaefer, Equations of State in a lattice Boltzmann model, Physics of Fluids, 18 (2006) 42101-42111.
[25] A. Kuzmin, J. Derksen, Shan-chen multiphase model, in, University of Alberta, 2011.
[26] C. Körner, M. Arnold, R.F. Singer, Metal foam stabilization by oxide network particles, Materials Science & Engineering A, 396(1-2) (2005) 28-40.