تحلیل ناپایداری فلاتر بال‌های دارای زاویه پس گرایی با استفاده از معادلات کاملاً ذاتی

نوع مقاله : مقاله پژوهشی

نویسندگان

دانشکده مهندسی هوافضا، دانشگاه صنعتی امیرکبیر، تهران، ایران

چکیده

در این مقاله مطالعه اثر زاویه پس گرایی بر ناپایداری دینامیکی بال هواپیما با الگوی سازهای منتج از معادلات هندسه دقیق کاملاً ذاتی هدفگذاری شده است. با توجه به عدم وجود آثار زاویه پسگرایی در ساختار این معادلات، توسعه معادلات مذکور جهت انجام این تحلیل از جنبه های نوآوری مقاله حاضر به شمار می رود. معادلات هندسه دقیق کاملاً ذاتی فقط شامل
نیروها، گشتاورها، سرع تهای خطی و زاویه ای می شوند و در این معادلات تغییر مکانها و دوران ها به صورت صریح ظاهر نمی شوند. به همین دلیل از مزایای مهم این نوع معادلات، مد لسازی کامل و بدون فرض ساده کننده در تغییر شکلهای بزرگ، درجه غیرخطی کم و بنابراین پیچیدگی کمتر است. به منظور تعیین وضعیت ناپایداری سیستم آیروالاستیک مذکور،
ابتدا معادلات غیرخطی حاکم به کمک روش تفاضلات محدود مرکزی گسسته و سپس حول حالت تعادل استاتیکی آن خطی سازی شده است. در نهایت با استفاده از حل مقادیر ویژه، پایداری سیستم به ازای سرعت ها و پارامترهای مختلف مورد بررسی واقع شده است. ارزیابی و دقت نتایج به دست آمده، از طریق مقایسه با نتایج موجود در پیشینه تحقیقات بررسی شده است. در
انتها مشخص گردید که استفاده از معادلات هندسه دقیق کاملاً ذاتی، ناپایداری بالهای دارای زاویه پسگرایی را با دقت خوبی شبیه سازی می کند.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Flutter Instability of Aircraft Swept Wings by Using Fully Intrinsic Equations

نویسندگان [English]

  • H. Moravej Barzani
  • M. Amoozgar
  • H. Shahverdi
Department of Aerospace Engineering, Amirkabir University of Technology, Tehran, Iran
چکیده [English]

In this paper, the dynamic instability of swept wings by using the geometrically exact
fully intrinsic beam equations is investigated. Due to the lack of existence of sweep angle effects in
the aeroelastic formulation of these equations, this study is aimed to add the effect of sweep angle to
the aforementioned formulation and this is one of the aspects of innovation in this paper. The fully
intrinsic equations involve only moments, forces, velocity and angular velocity, and in these equations,
the displacements and rotations will not appear explicitly. For this reason, the important advantages
of these equations are complete modeling without any simplifying assumptions in large deformations,
low-order nonlinearities and thus less complexity. In order to determine the stability of the wing, first
the resultant non-linear partial differential equations are discretized by using the central finite difference
method, and then linearized about the static equilibrium. Afterward, using the eigenvalue analysis of
linearized equations, the stability of the system versus different parameters is evaluated. The obtained
results are compared with those available in the literature, and good agreement is observed. Finally, it is
observed that by using the fully intrinsic equations, the instability of the swept wings can be determined
accurately

کلیدواژه‌ها [English]

  • Dynamic instability
  • fully intrinsic beam equations
  • Swept wing
  • Flutter speed
  • Peters unsteady aerodynamic
[1] D.H. Hodges, E. Dowell, Nonlinear equations of motion for the elastic bending and torsion of twisted nonuniform rotor blades, (1974).
[2] H.N. Arafat, Nonlinear response of cantilever beams, Virginia Tech, 1999.
[3] D.H. Hodges, Geometrically exact, intrinsic theory for dynamics of curved and twisted anisotropic beams, AIAA journal, 41(6) (2003) 1131-1137.
[4] E. Reissner, On One‐Dimensional Large‐Displacement Finite‐Strain Beam Theory, Studies in applied mathematics, 52(2) (1973) 87-95.
[5] G. Hegemier, S. Nair, A nonlinear dynamical theory for heterogeneous, anisotropic, elasticrods, AIAA Journal, 15(1) (1977) 8-15.
[6] D.H. Hodges, X. Shang, C.E. Cesnik, Finite element solution of nonlinear intrinsic equations for curved composite beams, Journal of the American Helicopter Society, 41(4) (1996) 313-321.
[7] M.J. Patil, D.H. Hodges, Flight dynamics of highly flexible flying wings, Journal of Aircraft, 43(6) (2006)1790-1799.
[8] C.-S. Chang, D. Hodges, Vibration characteristics of curved beams, Journal of Mechanics of Materials and Structures, 4(4) (2009) 675-692.
[9] Z. Sotoudeh, D. Hodges, Nonlinear aeroelastic analysis of joined-wing aircraft with fully intrinsic equations,in: 50th AIAA/ASME/ASCE/AHS/ASC Structures,Structural Dynamics, and Materials Conference 17th AIAA/ASME/AHS Adaptive Structures Conference 11th AIAA No, 2009, pp. 2464.
[10] M.J. Patil, M. Althoff, Energy-consistent, Galerkin approach for the nonlinear dynamics of beams using intrinsic equations, Journal of Vibration and Control,17(11) (2011) 1748-1758.
[11] M.J. Patil, D.H. Hodges, Variable-order finite elements for nonlinear, fully intrinsic beam equations, Journal of Mechanics of Materials and Structures, 6(1) (2011) 479-493.
[12] J.G. Barmby, H.J. Cunningham, I. Garrick, Study of effects of sweep on the flutter of cantilever wings, (1951).
[13] W. Molyneux, H. Hall, The aerodynamic effects of aspect ratio and sweepback on wing flutter, Citeseer,1957.
[14] I. Lottati, Flutter and divergence aeroelastic characteristics for composite forward swept cantilevered wing, Journal of Aircraft, 22(11) (1985) 1001-1007.
[15] G. Karpouzian, L. Librescu, Nonclassical effects on divergence and flutter of anisotropic swept aircraft wings, AIAA journal, 34(4) (1996) 786-794.
[16] A. Mazidi, S. Fazelzadeh, Flutter of a swept aircraft wing with a powered engine, Journal of Aerospace Engineering, 23(4) (2009) 243-250.
[17] D.H. Hodges, A mixed variational formulation based on exact intrinsic equations for dynamics of moving beams, International journal of solids and structures, 26(11)(1990) 1253-1273.
[18] C.-S. Chang, Vibration and aeroelastic analysis of highly flexible HALE aircraft, Georgia Institute of Technology,2006.
[19] H.A. Ardakani, T. Bridges, Review of the 3-2-1 euler angles: a yaw-pitch-roll sequence, Department of Mathematics, University of Surrey, Guildford GU2 7XH UK, Tech. Rep, (2010).
[20] D.A. Peters, S. Karunamoorthy, W.-M. Cao, Finite state induced flow models. I-Two-dimensional thin airfoil, Journal of Aircraft, 32(2) (1995) 313-322.
[21] M.J. Patil, Nonlinear aeroelastic analysis, flight dynamics, and control of a complete aircraft, Citeseer,1999.