[4] W. Thomas, E. Nicholas, E. Needham J, M. Murch,P. Templesmith, C. Dawes, Patent Application No.9125978.8, (1991).
[5] C. Dawes, W. Thomas, Friction stir joining of aluminum alloys, TWI Bulletin, 6 (1995) 124-128.
[6] R. Mishra, Z. MA, Friction stir welding and processing, Materials Science and Engineering R, 50 (2005) 1-78.
[7] C. Rhodes, M. Mahoney, W. Bingel, R. Spurling, C. Bampton, Effects of friction stir welding on microstructure of 7075 aluminum, Scripta Matereriala, 36 (1997) 69-75.
[8] G. Liu, L. Murr, C. Niou, J. McClure, F. Vega, Microstructural aspects of the friction stir welding of 6061 T6 aluminum, Scripta Material, 37 (1997) 355-361.
[9] S. Benavides, Y. Li, L. Murr, D. Brown, J. McClure, Low temperature friction stir welding of 2024 aluminum, Scripta Material, 41 (1999) 809-815.
[10] K. Jata, S. Semiatin, Continuous dynamic recrystallization during friction stir welding of high strength aluminum alloys, Scripta Material, 43 (8)(2000) 743-749.
[11] G. Buffa, A. Ducato, L. Fratini, Numerical procedure for residual stresses prediction in friction stir welding, Finite Elements in Analysis and Design, 47 (2011) 470–476.
[12] M. Song, R. Kovacevic, Thermal modeling of friction stir welding in a moving coordinate system and its validation, International Journal of Machine Tools & Manufacture, 43 (6) (2003) 605–615.
[13] S. Mandal, J. Rice, A. Elmustafa, Experimental and numerical investigation of the plunge stage in friction stir welding, Journal of Materials Processing Technology, 203 (2007) 411-419.
[14] Y. Chao, X. Qi, W. Teng, Heat transfer in friction stir welding, International Journal of Machine Tools & Manufacture, 105 (2008) 138–45.
[15] G. Buffa, L. Fratini, S. Pasta, Residual Stresses in FSW Numerical Simulation & Experimental Verification, International Centre for Diffraction Data, 23 (2009)1097-2002.
[16] G. Buffa, G. Campanile, L. Fratini, A. Prisco, Friction stir welding of lap joints: Influence of process parameters on the metallurgical and mechanical properties, Materials Science and Engineering A, 519 (2009) 15-26.
[17] A. Sadeghi, M. Ahmadi Najafabadi, Y. Javadi, M. Mohammadisefat, Using ultrasonic waves and finite element method to evaluate through-thickness residual stresses distribution in the friction stir welding of aluminum plates, Materials & Design, 52 (2013) 870-880.
[18] G. Buffa, L. Fratini, M. Schneider, M. Merkleinb, Micro and macro mechanical characterization of friction stir welded Ti–6Al–4V lap joints through experiments and numerical simulation, Journal of Materials Processing Technology, 213 (2013) 2312– 2322.
[19] M. Mardanijoz, MSc thesis, Experimental & mathematical investigation on heat transfer in friction stir welding, MSc Thesis, Amirkabir University of Technology, Tehran, Iran, (2012).
[20] M. J. Mohamadi Sefat, MSc thesis, Investigation on mechanical properties of friction stir welding in high strength aluminium alloy, MSc Thesis, Amirkabir University of Technology, Tehran, Iran, (2013).
[21] A. Zarini, MSc thesis, Numerical and experimental analysis of distortion in friction stir welding (FSW) of aluminium sheets, MSc Thesis, Amirkabir University of Technology, Tehran, Iran, (2013).
[22] S. Babu, D. G. Janaki Ram, V. P. Venkitakrishnan,G. Madhusudhan, K. Prasad Rao, Microstructure and Mechanical Properties of Friction Stir Lap Welded Aluminum Alloy AA2014, Journal of Mechanical Science and Technology, 28 (2012) 414–426.
[23] X. Xu, X. Yang, G. Zhou, J. Tong, Microstructures and fatigue properties of friction stir lap welds in aluminum alloy AA6061-T6, Materials and Design, 35 (2012) 175–183.
[24] F. Fadaeifard, K. A. Matori, M. Toozandehjani, A. R. Daud, M. Ariffin, N. Othman, F. Gharavi, A. Ramzani, F. Ostovan, Influence of rotational speed on mechanical properties of friction stir lap welded 6061-T6 Al alloy, Transactions of Nonferrous Metal Society of China, 24(2014) 1004−1011.
[25] E. Salari, M. Jahazi, A. Khodabandeh, H. Ghasemi- Nanesa, Influence of tool geometry and rotational speed on mechanical properties and defect formation in friction stir lap welded 5456 aluminum alloy sheets, Materials and Design, 58 (2014) 381–389.
[26] M. Miles, T. Nelson, B. Decker, Formability and strength of FSWed aluminum sheets, Metallurgical and Materials Transactions A, 35 (2004) 3461-3468.
[27] M. Bahrami, MSc thesis, An investigation the effect of SiC particles on mechanical properties in friction stir butt joint AA7075, MSc Thesis, Amirkabir University, Tehran, Iran, (2012).
[28] A. Sadeghi, MSc thesis, An investigation on residual stresses distribution in the friction stir welding of aluminum plates with ultrasonic waves, MSc Thesis, Amirkabir University, Tehran, Iran, (2012).
[29] G. Buffa, J. Hua, R. Shivpuri, L. Fratini, A continuum based FEM model for friction stir welding-model development, Materials Science and Engineering A, 419(2006) 389–396.
[30] Tech report, A., 2015. ASM Aerospace Specification Material Inc. ASM material sheet data, Oct 2015. http://asm.matweb.com/search/SpecificMaterial.asp?bassnum=MA7075O
[31] K. Deplus, A. Simar, W. Van Haver, Residual stresses in aluminium alloy friction stir weld, International Journal of Advanced Manufacturing Technology, 56 (2006) 493-504.
[32] J. Zapata, M. Toro, D. Lopez, Residual stresses in friction stir dissimilar welding of aluminum alloys, Journal of Materials Processing Technology, 229 (2015)121-127.