[1] Comprehensive guidance for cogeneration, in, Ministry of Energy, office of efficiency of Electricite and energy,2009.
[2] W. El-Khattam, M. Salama, Distributed generation technologies, definitions and benefits, Electric power systems research, 71(2) (2004) 119-128.
[3] M. Kalantar, Dynamic behavior of a stand-alone hybrid power generation system of wind turbine, microturbine,solar array and battery storage, Applied Energy, 87(10)(2010) 3051-3064.
[4] G. Pepermans, J. Driesen, D. Haeseldonckx, R. Belmans, W. D’haeseleer, Distributed generation: definition,benefits and issues, Energy policy, 33(6) (2005) 787-798.
[5] M. Ismail, M. Moghavvemi, T. Mahlia, Current utilization of microturbines as a part of a hybrid system in distributed generation technology, Renewable and Sustainable Energy Reviews, 21 (2013) 142-152.
[6] E. Mohammadi, M. Montazeri-Gh, Simulation of Full and Part-Load Performance Deterioration of Industrial Two-Shaft Gas Turbine, Journal of Engineering for Gas Turbines and Power, 136(9) (2014) 092602-092609.
[7] A. Lakshminarasimha, M. Boyce, C. Meher-Homji, Modeling and analysis of gas turbine performance deterioration, Journal of engineering for gas turbines and power, 116(1) (1994) 46-52.
[8] C.B. Meher-Homjid, GAS TURBINE PERFORMANCE DETERIORATION, in: 30th Turbomachinery Symposium. 2001., 2001, pp. 17-20.
[9] E. Syverud, Axial Compressor Performance Deterioration and Recovery through Online Washing, Norwegian University of Science and Technology, Trondheim, Norway, 2007.
[10] I.S. Diakunchak, Performance deterioration in industrial gas turbines, Journal of Engineering for Gas Turbines and Power, 114(2) (1992) 161-168.
[11] A. Razak, Industrial gas turbines: performance and operability, Elsevier, 2007.
[12] P.C. Escher, Pythia: An object-orientated gas path analysis computer program for general applications, Cranfield University, 1995.
[13] R. Kurz, K. Brun, Degradation in gas turbine systems,Journal of Engineering for Gas Turbines and Power, 123(1) (2001) 70-77.
[14] R. Kurz, K. Brun, C. Meher-Homji, J. Moore, Gas Turbine Performance and Maintenance, in: Proceedings of the Forty-First Turbomachinery Symposium,Turbomachinery Laboratory, Texas A&M University and Solar Turbines Incorporated, Houston, Texas, 2012.
[15] N. Aretakis, I. Roumeliotis, K. Mathioudakis, Performance Model ``Zooming'' for In-Depth Component Fault Diagnosis, Journal of Engineering for Gas Turbines and Power, 133(3) (2011) 031602-031611.
[16] S.M.G. Sajjadi, R; Assadollahi Ghohieh, The effect of maximum thickness and surface roughness variability of blades on performance of axial compressor, Aerospace Mechanics, 9(1) (2013) 53-61.
[17] G.M. Chahar taghi M, Samaee nia A, Karrabi H, Numerical simulation of roughness effect on turbine performance with full cooling, Modares Mechanical Engineering, 13(13) (2014) 143-156.
[18] J.E. Yoon, J.J. Lee, T.S. Kim, J.L. Sohn, Analysis of performance deterioration of a micro gas turbine and the use of neural network for predicting deteriorated component characteristics, Journal of mechanical science and technology, 22(12) (2008) 2516-2525.
[19] E.E.B. Gomes, D. McCaffrey, M.J.M. Garces, A.L. Polizakis, P. Pilidis, Comparative Analysis of Microturbines Performance Deterioration and Diagnostics, in: GT2006 - ASME Turbo Expo 2006:Power for Land, Sea and Air, ASME, Barcelona, Spain,2006.
[20] M. Khoshnoud, Effect of Gas turbine components' deterioration on their performance, Amirkabir university of technology, 2014.
[21] F. Melino, M. Morini, A. Peretto, M. Pinelli, P.R. Spina, Compressor fouling modeling: relationship between computational roughness and gas turbine operation time, Journal of Engineering for Gas Turbines and Power,134(5) (2012) 052401.
[22] G. Eisenlohr, H. Krain, F.-A. Richter, V. Tiede,Investigations of the flow through a high pressure ratio centrifugal impeller, in: ASME Turbo Expo 2002: Power for Land, Sea, and Air, American Society of Mechanical Engineers, 2002, pp. 649-657.
[23] Technology Characterization: Microturbines, Energy and Environmental Analysis, Arlington, Virginia, 2008.
[24] H. Cohen, G. Rogers, H. Saravanamuttoo, Gas turbine theory, 1996.
[25] T100 Detailed Specifications, in, Turbec, 2009.
[26] M.M. Majoumerd, H.N. Somehsaraei, M. Assadi, P.Breuhaus, Micro gas turbine configurations with carbon capture - Performance assessment using a validated thermodynamic model, Applied Thermal Engineering,(0) (2014).
[27] H. Saito, Micro gas turbine risks and market in: IMIA, Stokholm, 2003.
[28] P. Akbari, R. Nalim, N. Müller, Performance Enhancement of Microturbine Engines Topped With Wave Rotors, Journal of engineering for gas turbines and power, 128(1) (2006) 190-202.
[29] M.A.R. do Nascimento, L. de Oliveira Rodrigues, E.C.dos Santos, E.E.B. Gomes, F.L.G. Dias, E.I.G. Velásques,R.A.M. Carrillo, Micro Gas Turbine Engine: A Review,in, 2014.
[30] P1012 C600 600kW Power Package HP Natural Gas Capstone Turbine Corporation, 2010.
[31] 100 kW CHP Microturbine, in, Elliott Microturbines, 2005.
[32] F. Bozza, A. Pontecorvo, F. Reale, R. Tuccillo,ANALISI DEL FUNZIONAMENTO A REGIME ED IN TRANSITORIO DI UNA MICROTURBINA A GAS, in:60° Congresso Nazionale ATI, Roma, 2005.
[33] J. Kaikko, Performance prediction of gas turbines by solving a system of non-linear equations, Lappeenranta University of Technology, 1998.
[34] T. Alemu Lemma, B.M.H. Fakhruldin, R. Chalilullah, Generating gas turbine component maps relying on partially known overall system characteristics, Journal of Applied Sciences, 11(11) (2011) 1885-1894.
[35] F. Caresana, L. Pelagalli, G. Comodi, M. Renzi, Microturbogas cogeneration systems for distributed generation: Effects of ambient temperature on globalm performance and components’ behavior, Applied Energy,124 (2014) 17-27.
[36] V. Ganesan, Gas Turbines 3E, Tata McGraw-Hill Education, 2010.
[37] P.P. Walsh, P. Fletcher, Gas turbine performance, John Wiley & Sons, 2004.