[1] H. Kraus, Creep Analysis, John Wiley & Sons, New York, 1980.
[2] S.L. Mannan, S.C. Chetal, B. Raj, S.B. Bhoje,Selection of Materials for Prototype Fast Breeder Reactor, Transactions Indian Institute of Metals, 56(2)(2003) 155-178.
[3] G.V. Smith, Properties of Metals at Elevated Temperatures, McGraw-Hills, NewYork, 1950.
[4] A.K. Koul, R. Castillo, K. Willett, Creep life predictions in Nickle-based superalloys, Materials Science and Engineering, 66(2) (1984)213–226.
[5] A. Loghman, A. Askari Kashan, M. Younesi Bidgoli, A.R. Shajari, A. Ghorbanpour Arani, Effect of particle content, size and temperature on magneto-thermomechanical creep behavior of composite cylinders,Journal of Mechanical Science and Technology, 27(4) (2013) 1041-1051.
[6] Z. Hoseini, M.Z. Nejad, A. Niknejad, M. Ghannad, New exact solution for creep behavior of rotating thick-walled cylinders, Journal of Basic and Applied Scientific Research, 1(10) )2011(1704–1708.
[7] M. Zamani Nejad, M. Davoudi Kashkoli, Timedependent thermo-creep analysis of rotating FGM thick-walled cylindrical pressure vessels under heat flux, International Journal of Engineering science, 82(2014) 222–237.
[8] A. Loghman, M.A. Wahab, Creep damage simulation of thick-walled tubes using the Θ projection concept,International Journal of Pressure Vessels and Piping,67(1) (1996) 105–111.
[9] T. Singh, V.K. Gupta, Modeling steady state creep in functionally graded thick cylinder subjected to internal pressure, Journal of Composite Materials, 44(11) (2010) 1317–1333.
[10] A. Loghman, A. Ghorbanpour Arani, S. Amir, V. Vajedi, Magnetothermoelastic creep analysis of functionally graded cylinders, International Journal of Pressure Vessels and Piping, 87(7) (2010) 389-395.
[11] V. Daghigh, H. Daghigh, A. Loghman, A. Simoneau, Time-dependent creep analysis of rotating ferritic steel disk using Taylor series and Prandtl–Reuss relation,International Journal of Mechanical sciences,77(2013) 40–46.
[12] L.H. You, H. Ou, Z.Y. Zheng, Creep deformations and stresses in thick-walled cylindrical vessels of functionally graded materials subjected to internal pressure, Composite Structures, 78(2) (2007) 285–291.
[13] A. Ghorbanpour Arani, A.A. Mosallaie Barzoki, R. Kolahchi, M.R. Mozdianfard, A. Loghman, Semi-analytical solution of time-dependent electrothermomechanical creep for radially polarized piezoelectric cylinder, Computers and Structures,89(2010) 1494-1502.
[14] Y.Y. Yang, Time-dependent stress analysis in functionally graded materials, International Journal of Solids and Structures, 37 (2000) 7593–7608.
[15] S.A. Hosseini Kordkheili, M. Livani, Thermoelastic creep analysis of a functionally graded various thickness rotating disk with temperature-dependent material properties, International Journal of Pressure Vessels and Piping, 111(2013) 63–74.
[16] M. Davoudi Kashkoli, M. Zamani Nejad, Effect of heat flux on creep stresses of thick-walled cylindrical pressure vessels, Journal of Applied Research and Technology, 12(3) (2014). 585–597.
[17] G. Lewis, K. Shaw, Creep constitutive model and component lifetime estimation: the Case of niobiummodified 9Cr-1Mo steel weldments, Journal of Materials Engineering and performance, 20(7) (2011)1310–1314.
[18] Loghman A, Shokouhi N. Creep damage evaluation of thick-walled spheres using a long-term creep constitutive model, Journal of Mechanical Science and Technology, 23(10) (2009) 2577–82.
[19] T. Masse, Y. Lejeail, Creep mechanical behavior of modified 9Cr1Mo steel weldments: Experimental analysis and modelling, Journal of Nuclear Engineering and Design, 254 (2013) 97-110.
[20] S. Goyal, K. Laha, Creep life prediction of 9Cr–1Mo steel under multiaxial state of stress, Journal of Materials Science & Engineering A, 615(2014) 348-360.
[21] L. Xiaotian, M.T. Cabrillat, Y. Lejeail, Study of modified 9Cr-1Mo steel weldments, International Atomic Energy Agency, 43(2006) 64-92.