[1] J. Zeng, T. Korsmeyer, Principles of droplet electrohydrodynamics for lab-on-a-chip, Lab on a Chip, 4(4) (2004) 265-277.
[2] S.K. Cho, H. Moon, C.-J. Kim, Creating, transporting, cutting, and merging liquid droplets by electrowetting-based actuation for digital microfluidic circuits, Journal of Microelectromechanical Systems, 12(1) (2003) 70-80.
[3] H.T. Yudistira, V.D. Nguyen, P. Dutta, D. Byun, Flight behavior of charged droplets in electrohydrodynamic inkjet printing, Applied Physics Letters, 96(2) (2010) 023503.
[4] J. Shrimpton, A. Yule, Characterisation of charged hydrocarbon sprays for application in combustion systems, Experiments in fluids, 26(5) (1999) 460-469.
[5] C.T. O'Konski, H.C. Thacher Jr, The distortion of aerosol droplets by an electric field, The Journal of Physical Chemistry, 57(9) (1953) 955-958.
[6] G. Taylor, Disintegration of water drops in an electric field, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences, 280(1382) (1964) 383-397.
[7] R. Allan, S. Mason, Particle behaviour in shear and electric fields. I. Deformation and burst of fluid drops, Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, 267(1328) (1962) 45-61.
[8] G. Taylor, Studies in electrohydrodynamics. I. The circulation produced in a drop by electrical field, Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, 291(1425) (1966) 159-166.
[9] D. Saville, Electrohydrodynamics: the Taylor-Melcher leaky dielectric model, Annual review of fluid mechanics, 29(1) (1997) 27-64.
[10] T. Tsukada, T. Katayama, Y. Ito, M. Hozawa, Theoretical and Experimental Studies of Circulations Inside and Outside a Deformed Drop under a Uniform Electric Field, Journal of chemical engineering of Japan, 26(6) (1993) 698-703.
[11] H. Paknemat, A. Pishevar, P. Pournaderi, Numerical simulation of drop deformations and breakup modes caused by direct current electric fields, Physics of Fluids (1994-present), 24(10) (2012) 102101.
[12] W.-F. Hu, M.-C. Lai, Y.-N. Young, A hybrid immersed boundary and immersed interface method for electrohydrodynamic simulations, Journal of Computational Physics, 282 (2015) 47-61.
[13] A. Fernández, G. Tryggvason, J. Che, S.L. Ceccio, The effects of electrostatic forces on the distribution of drops in a channel flow: Two-dimensional oblate drops, Physics of Fluids (1994-present), 17(9) (2005) 093302.
[14] M.A. Halim, A. Esmaeeli, Computational studies on the transient electrohydrodynamics of a liquid drop, FDMP: Fluid Dynamics & Materials Processing, 9(4) (2013) 435-460.
[15] T. Wang, H.-X. Li, J.-F. Zhao, Three-Dimensional Numerical Simulation of Bubble Dynamics in Microgravity under the Influence of Nonuniform Electric Fields, Microgravity Science and Technology, (2016) 1-10.
[16] J. Melcher, G. Taylor, Electrohydrodynamics: a review of the role of interfacial shear stresses, Annual Review of Fluid Mechanics, 1(1) (1969) 111-146.
[17] G. Tryggvason, B. Bunner, A. Esmaeeli, D. Juric, N. Al-Rawahi, W. Tauber, J. Han, S. Nas, Y.-J. Jan, A front-tracking method for the computations of multiphase flow, Journal of Computational Physics, 169(2) (2001) 708-759.
[18] S.O. Unverdi, G. Tryggvason, A front-tracking method for viscous, incompressible, multi-fluid flows, Journal of computational physics, 100(1) (1992) 25-37.
[19] P.H. Rhodes, R.S. Snyder, G.O. Roberts, Electrohydrodynamic distortion of sample streams in continuous flow electrophoresis, Journal of Colloid and interface Science, 129(1) (1989) 78-90.
[20] P.F. Salipante, P.M. Vlahovska, Electrohydrodynamics of drops in strong uniform dc electric fields, Physics of Fluids (1994-present), 22(11) (2010) 112110.
[21] S. Torza, R. Cox, S. Mason, Electrohydrodynamic deformation and burst of liquid drops, Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences, 269(1198) (1971) 295-319.