[1] L.M. Fu, R.J. Yang, G.B. Lee, H.H. Liu, Electrokinetic injection techniques in microfluidic chips, Analytical chemistry, 74(19) (2002) 5084-5091.
[2] V.E. Papadopoulos, I.N. Kefala, G. Kaprou, G. Kokkoris, D. Moschou, G. Papadakis, E. Gizeli, A. Tserepi, A passive micromixer for enzymatic digestion of DNA, Microelectronic Engineering, 124 (2014) 42-46.
[3] A. Ahmadian Yazdi, A. Sadeghi, M.H. Saidi, Electrokinetic mixing at high zeta potentials: Ionic size effects on cross stream diffusion, Journal of Colloid and Interface Science, 442 (2015) 8-14.
[4] A. Alizadeh, L. Zhang, M. Wang, Mixing enhancement of low-Reynolds electro-osmotic flows in microchannels with temperature-patterned walls, Journal of Colloid and Interface Science, 431 (2014) 50-63.
[5] S. Ebrahimi, A. Hasanzadeh-Barforoushi, A. Nejat, F.Kowsary, Numerical study of mixing and heat transfer in mixed electroosmotic/pressure driven flow through T-shaped microchannels, International Journal of Heat and Mass Transfer, 75 (2014) 565-580.
[6] R. Peng, D. Li, Effects of ionic concentration gradient on electroosmotic flow mixing in a microchannel, Journal of Colloid and Interface Science, 440 (2015) 126-132.
[7] S. Bera, S. Bhattacharyya, On mixed electroosmoticpressure driven flow and mass transport in microchannels,International Journal of Engineering Science, 62 (2013)165-176.
[8] A.K. Nayak, Analysis of mixing for electroosmotic flow in micro/nano channels with heterogeneous surface potential, International Journal of Heat and Mass Transfer, 75 (2014) 135-144.
[9] Y.Y. Liang, G.A. Fimbres Weihs, D.E. Wiley,Approximation for modelling electro-osmotic mixing in the boundary layer of membrane systems, Journal of Membrane Science, 450 (2014) 18-27.
[10] C.O. Ng, C. Qi, Electroosmotic flow of a power-law fluid in a non-uniform microchannel, Journal of Non-Newtonian Fluid Mechanics, 208–209 (2014) 118-125.
[11] J. Jamaati, H. Niazmand, M. Renlsizbulut, Investigation of electrokinetic mixing in 3D non-homogenous microchannels, Journal Of Computational And Applied Research In Mechanical Engineering, 3(1) (2013) 41-52.
[12] J. Jamaati, A.R. Farahinia, H. Niazmand, Mixing Investigation In Combined Electroosmotic/Pressuredriven Micromixers With Heterogeneous Wall Charges,Modares Mechanical Engineering, 15(7) (2015) 297-306.
[13] S. Bhattacharyya, S. Bera, Nonlinear Electroosmosis Pressure-Driven Flow in a Wide Microchannel With Patchwise Surface Heterogeneity, Journal of Fluids Engineering, 135(2) (2013) 021303.
[14] S. Bhattacharyya, S. Bera, Combined electroosmosispressure driven flow and mixing in a microchannel with surface heterogeneity, Applied Mathematical Modelling,39 (15) (2015) 4337-4350.
[15] J. Jamaati, A.R. Farahinia, H. Niazmand, Numerical Investigate of Electroosmotic Flow in Heterogeneous Microchannels, Modares Mechanical Engineering, 15(3)(2015) 260-270.
[16] J. Jamaati, A.R. Farahinia, H. Niazmand, Investigation of Mixing in Electroosmotic Micromixers using Nernst-Planck Equations, Modares Mechanical Engineering,15(4) (2015) 203-213.
[17] J.T. Cheng, N. Giordano, Fluid flow through nanometerscale channels, Physical Review E - Statistical, Nonlinear,and Soft Matter Physics, 65 (3) (2002) 0312061-0312065.
[18] J.K. Holt, H.G. Park, Y. Wang, M. Stadermann, A.B.Artyukhin, C.P. Grigoropoulos, A. Noy, O. Bakajin,Fast mass transport through sub-2-nanometer carbon nanotubes, Science, 312 (5776) (2006) 1034-1037.
[19] M. Majumder, N. Chopra, R. Andrews, B.J. Hinds,Nanoscale hydrodynamics: Enhanced flow in carbon nanotubes, Nature, 438 (7064) (2005) 44.
[20] D.C. Tretheway, C.D. Meinhart, A generating mechanism for apparent fluid slip in hydrophobic microchannels, Physics of Fluids, 16 (5) (2004) 1509-1515.
[21] Y. Zhu, S. Granick, Rate-dependent slip of Newtonian liquid at smooth surfaces, Physical Review Letters, 87 (9)(2001) 961051-961054.
[22] C. Neto, D.R. Evans, E. Bonaccurso, H.J. Butt, V.S.J.Craig, Boundary slip in Newtonian liquids: A review of experimental studies, Reports on Progress in Physics, 68(12) (2005) 2859-2897.
[23] J.W.G. Tyrrell, P. Attard, Images of nanobubbles on hydrophobic surfaces and their interactions, Physical Review Letters, 87 (17) (2001) 1761041-1761044.
[24] L. Joly, C. Ybert, E. Trizac, L. Bocquet, Liquid friction on charged surfaces: From hydrodynamic slippage to electrokinetics, Journal of Chemical Physics, 125 (20)(2006) 204716
[25] Y. Ren, D. Stein, Slip-enhanced electrokinetic energy conversion in nanofluidic channels, Nanotechnology, 19(19) (2008) 195707.
[26] C.I. Bouzigues, P. Tabeling, L. Bocquet, Nanofluidics in the debye layer at hydrophilic and hydrophobic surfaces,Physical Review Letters, 101 (11) (2008) 114503.
[27] S. Chakraborty, Generalization of interfacial electrohydrodynamics in the presence of hydrophobic interactions in narrow fluidic confinements, Physical Review Letters, 100 (9) (2008) 097801.
[28] J. Yang, D.Y. Kwok, Effect of liquid slip in electrokinetic parallel-plate microchannel flow, Journal of Colloid and Interface Science, 260 (1) (2003) 225-233.
[29] H.M. Park, Y.J. Choi, A method for simultaneous estimation of inhomogeneous zeta potential and slip coefficient in icrochannels, Analytical Chimica. Acta.,616 (2) (2008) 160-169.
[30] H.M. Park, T.W. Kim, Simultaneous estimation of zeta potential and slip coefficient in hydrophobic microchannels, Analytical Chimica. Acta., 593 (2) (2007)171-177.
[31] A. Alam, A. Afzal, K.Y. Kim, Mixing performance of a planar micromixer with circular obstructions in a curved microchannel, Chemical Engineering Research and Design, 92 (3) (2014) 423-434.
[32] N. Solehati, J. Bae, A.P. Sasmito, Numerical investigation of mixing performance in microchannel T-junction with wavy structure, Computers & Fluids, 96(2014) 10-19.
[33] M.M. Afsari, Joule heating effects in electroosmotic flow through microchannel, Birjand University, Birjand,2012.
[34] P. Fodor, B. Vyhnalek, M. Kaufman, Entropic Evaluation of Dean Flow Micromixer, in: Proceeding of COMSOLConference, Boston, 2013.
[35] F.M. Mastrangelo, F. Pennella, F. Consolo, M. Rasponi, A. Redaelli, F.M. Montevecchi, U. Morbiducci,Micromixing and Microchannel Design: Vortex Shape and Entropy, in: 2nd Micro and Nano Flows Conference,West London, 2009.
[36] G. Zongyu, J.J. Chen, An analysis of the entropy of mixing for granular materials, Powder Technology, 266(2014) 90-95.
[37] M. Wang, J. Wang, S. Chen, N. Pan, Electrokinetic pumping effects of charged porous media in microchannels using the lattice Poisson-Boltzmann method, J. Colloid Interface Sci., 304(1) (2006) 246-253.
[38] J.H. Masliyah, Electrokinetik transport phenomena,Alberta Oil Sands Technology and Research Authority,Canada, 1994.
[39] E.B. Cummings, S.K. Griffiths, R.H. Nilson, P.H. Paul,Conditions for similitude between the fluid velocity and electric field in electroosmotic flow, Analytical chemistry, 72(11) (2000) 2526-2532.
[40] J.G. Santiago, Electroosmotic Flows in Microchannels with Finite Inertial and Pressure Forces, Analytical chemistry, 73(10) (2001) 2353-2365.
[41] C.E. Shannon, A mathematical theory of communication,Bell Syst. Technol. J., 27 (1948) 379-423, 623-656.
[42] W. Weaver, C.E. Shannon, The Mathematical Theory of Communication, University of Illinois Press, United State of America, 1963.
[43] R.J. Hunter, Zeta Potential in Colloid Science, Academic Press, United State of America, 1981.
[44] S.A. Mirbozorgi, H. Niazmand, M. Renksizbulut,Electro-Osmotic Flow in Reservoir-Connected Flat Microchannels With Non-Uniform Zeta Potential, Journal of Fluids Engineering, 128(6) (2006) 1133-1143.