مدلسازی جابه جایی آزاد نانوسیال اکسید آلومینیم-آب درون محفظه مربعی منحنی با استفاده از روش شبکه ای بولتزمن

نوع مقاله : مقاله پژوهشی

نویسندگان

دانشکده مهندسی مکانیک، دانشگاه صنعتی شریف، تهران، ایران

چکیده

در پژوهش حاضر جابجایی آزاد نانوسیال آب و اکسید آلومینیم در یک محفظه مربعی با مرزهای منحنی در قسمت بالا و پایین محفظه، به روش شبکه‌ای بولتزمن مورد مطالعه قرار گرفته است. برای حل معادلات سرعت و دما از روش نه سرعته (D2Q9) استفاده شده است. همچنین برای بررسی تاثیر اندازه نانوذرات بر عدد ناسلت متوسط جریان، از روش دو جزیی استفاده شده است و برای هر جز (آب و نانوذرات) معادلات جداگانه‌ای حل شده است. دو نیروی بویانسی و پسا برای کوپل کردن معادلات دو جزء در نظر گرفته شده است. در این پژوهش، عدد رایلی از 103 تا 106 متغیر است در حالی که اندازه نانوذرات سه مقدار مختلف 20، 50 و 100 نانومتر را می پذیرد. کسر حجمی نانوذرات بین 0 تا 5 درصد متغیر می باشد. نتایج نشان می دهد که نقش نانوذرات در افزایش عدد ناسلت متوسط جریان به صورت افزایش عدد رایلی موثر جریان در کانتورهای دما و جریان قابل مشاهده می‌باشد. همچنین با استفاده از روش دو جزیی، امکان تحلیل عددی تاثیر اندازه نانوذرات بر روی عدد ناسلت متوسط جریان حاصل می‌گردد. نتایج حاکی از آن است که اندازه نانوذرات تاثیر معکوسی بر روی عدد ناسلت جریان دارد. در انتها، براساس نتایج به دست آمده از مدلسازی، رابطه ای برای پیش بینی عدد ناسلت متوسط نانوسیال وابسته به عدد رایلی، کسر حجمی نانوذرات و اندازه نانوذرات ارائه شده است.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Al2O3-water Nanofluid in a Square Cavity with Curved Boundaries

نویسندگان [English]

  • M. Hosseini Abadshapoori
  • M. H. Saidi
Mechanical Engineering, Center of Excellence in Energy Conversion (CEEC), Sharif University of Technology, Tehran, Iran
چکیده [English]

In this research, natural convection of Al2O3-water nanofluid in a square cavity with top and bottom curved boundaries has been investigated using lattice Boltzmann method. A D2Q9 single relaxation time model has been used for both the hydrodynamic and thermal equations. Furthermore, in order to study the effect of nanoparticle size on the average Nusselt number, a two-component model has been used and two separate equations (one for each component) have been solved. Drag and buoyancy forces are included for coupling of these equations. Rayleigh number has been varied from 103 to 106 while volume fraction of nanoparticles is selected between 0 to 0.05 (six values including pure water). Three nanoparticle sizes, namely 20, 50 and 100nm, have been used in our simulations. Results show that the main factor for controlling the effectiveness of average Nusselt number of nanofluids compared to the base fluid is the volume fraction of nanoparticles. Results also reveal that nanoparticle size has a deteriorating effect on the Nusselt number enhancement of nanofluid. Effect of utilizing nanoparticles on the temperature and velocity contours are presented and showed that the effect of nanoparticles can be seen in increasing the effective Rayleigh number of the flow. A correlation is then presented to predict the average Nusselt number of Al2O3-water nanofluid in the investigated criteria for Rayleigh number, volume fraction and size of nanoparticles.

کلیدواژه‌ها [English]

  • Natural convection
  • Nanofluid
  • Lattice Boltzmann method
  • Average Nusselt Number
  • Curved Boundary
[1] F.I. Doshmanziari, A.E. Zohir, H.R. Kharvani, D. Jalali-Vahid, M.R. Kadivar, Characteristics of heat transfer and flow of Al2O3/water nanofluid in a spiral-coil tube for turbulent pulsating flow, Heat Mass Transfer, (2015)1-16.
[2] C. Pang, J.W. Lee, Y.T. Kang, Enhanced thermal conductivity of nanofluids by nanoconvection and percolation network, Heat Mass Transfer, (2015) 1-10.
[3] D.A. Wolf-Gladrow, Lattice-Gas Cellular Automata and Lattice Boltzmann Models, in, Springer-Verlag Berlin Heidelberg, 2000.
[4] E. Aslan, I. Taymaz, A.C. Benim, Investigation of LBM curved boundary treatments for unsteady flows, European Journal of Mechanics - B/Fluids, 51 (2015)68-74.
[5] E. Abu-Nada, H.F. Oztop, I. Pop, Effects of surface waviness on heat and fluid flow in a nanofluid filled closed space with partial heating, Heat Mass Transfer, (2015) 1-13.
[6] L. Zhou, Y. Xuan, Q. Li, Multiscale simulation of flow and heat transfer of nanofluid with lattice Boltzmann method, International Journal of Multiphase Flow, 36(5)(2010) 364-374.
[7] G.R. Kefayati, S.F. Hosseinizadeh, M. Gorji, H. Sajjadi, Lattice Boltzmann simulation of natural convection in tall enclosures using water/SiO2 nanofluid, International Communications in Heat and Mass Transfer, 38(6)(2011) 798-805.
[8] G.R. Kefayati, Lattice Boltzmann simulation of MHD natural convection in a nanofluid-filled cavity with sinusoidal temperature distribution, Powder Technology,243 (2013) 171-183.
[9] H. Nemati, M. Farhadi, K. Sedighi, E. Fattahi, A.A.R.Darzi, Lattice Boltzmann simulation of nanofluid in liddriven cavity, International Communications in Heat and Mass Transfer, 37(10) (2010) 1528-1534.
[10] F.-H. Lai, Y.-T. Yang, Lattice Boltzmann simulation of natural convection heat transfer of Al2O3/water nanofluids in a square enclosure, International Journal of Thermal Sciences, 50(10) (2011) 1930-1941.
[11] Y. Guo, D. Qin, S. Shen, R. Bennacer, Nanofluid multi-phase convective heat transfer in closed domain: Simulation with lattice Boltzmann method, International Communications in Heat and Mass Transfer, 39(3)(2012) 350-354.
[12] Y.-T. Yang, F.-H. Lai, Lattice Boltzmann simulation of heat transfer and fluid flow in a microchannel with nanofluids, Heat Mass Transfer, 47(10) (2011) 1229-1240.
[13] ] W.N. Zhou, Y.Y. Yan, J.L. Xu, A lattice Boltzmann simulation of enhanced heat transfer of nanofluids, International Communications in Heat and Mass Transfer, 55(0) (2014) 113-120.
[14] ] H. Bararnia, K. Hooman, D.D. Ganji, Natural Convection in a Nanofluids-Filled Portioned Cavity: The Lattice-Boltzmann Method, Numerical Heat Transfer, Part A: Applications, 59(6) (2011) 487-502.
[15] H. Sajjadi, M. Gorji, G.H.R. Kefayati, D.D. Ganji, Lattice Boltzmann Simulation of Turbulent Natural Convection in Tall Enclosures Using Cu/Water Nanofluid, Numerical Heat Transfer, Part A: Applications, 62(6) (2012) 512-530.
[16] S.K. Das, S.U.S. Choi, H.E. Patel, Heat Transfer in Nanofluids—A Review, Heat Transfer Engineering, 27(10) (2006) 3-19.
[17] ] Z. Haddad, C. Abid, A.A. Mohamad, O. Rahli, S.Bawazer, Natural convection of silica–water nanofluids based on experimental measured thermophysical properties: critical analysis, Heat Mass Transfer, (2015)1-15.
[18] J.C. Maxwell, A treatise on electricity and magnetism, Unabridged 3rd ed., Dover Publications, New York,N.Y., 1954.
[19] R.L. Hamilton, O.K. Crosser, Thermal Conductivity of Heterogeneous Two-Component Systems, Industrial & Engineering Chemistry Fundamentals, 1(3) (1962) 187-191.
[20] J. Sarkar, A critical review on convective heat transfer correlations of nanofluids, Renewable and Sustainable Energy Reviews, 15(6) (2011) 3271-3277.
[21] Y. Xuan, Z. Yao, Lattice Boltzmann model for nanofluids, Heat Mass Transfer, 41(3) (2005) 199-205.
[22] C. Qi, Y. He, S. Yan, F. Tian, Y. Hu, Numerical simulation of natural convection in a square enclosure filled with nanofluid using the two-phase Lattice Boltzmann method, Nanoscale Res Lett, 8(1) (2013) 1-16.
[23] A.C. Benim, E. Aslan, I. Taymaz, Lattice Boltzmann Method for Laminar Forced Convection in a Channel with a Triangular Prism, 42(4) (2011) 359-377.
[24] Z. Guo, C. Zheng, B. Shi, An extrapolation method for boundary conditions in lattice Boltzmann method,Physics of Fluids (1994-present), 14(6) (2002) 2007-2010.
[25] O. Filippova, D. Hänel, Grid Refinement for Lattice-BGK Models, Journal of Computational Physics, 147(1)(1998) 219-228.
[26] ] R. Mei, L.-S. Luo, W. Shyy, An Accurate Curved Boundary Treatment in the Lattice Boltzmann Method, Journal of Computational Physics, 155(2) (1999) 307-330.
[27] Y.Y. Yan, Y.Q. Zu, Numerical simulation of heat transfer and fluid flow past a rotating isothermal cylinder – A LBM approach, International Journal of Heat and Mass Transfer, 51(9–10) (2008) 2519-2536.
[28] C. Pan, L.-S. Luo, C.T. Miller, An evaluation of lattice Boltzmann schemes for porous medium flow simulation, Computers & Fluids, 35(8–9) (2006) 898-909.
[29] J. Wang, D. Wang, P. Lallemand, L.-S. Luo, Lattice Boltzmann simulations of thermal convective flows in two dimensions, Computers & Mathematics with Applications, 65(2) (2013) 262-286.
[30] D. Contrino, P. Lallemand, P. Asinari, L.-S. Luo, Lattice-Boltzmann simulations of the thermally driven 2D square cavity at high Rayleigh numbers, Journal of Computational Physics, 275(0) (2014) 257-272.
[31] G. Strang, On the Construction and Comparison of Difference Schemes, SIAM Journal on Numerical Analysis, 5(3) (1968) 506-517.
[32] H. Chen, Y. Ding, Y. He, C. Tan, Rheological behavior of ethylene glycol based titania nanofluids, Chemical Physics Letters, 444(4–6) (2007) 333-337.
[33] C. He, G. Ahmadi, Particle deposition in a nearly developed turbulent duct flow with electrophoresis, Journal of Aerosol Science, 30(6) (1999) 739-758.
[34] K. Khanafer, K. Vafai, M. Lightstone, Buoyancydriven heat transfer enhancement in a two-dimensional enclosure utilizing nanofluids, International Journal of Heat and Mass Transfer, 46(19) (2003) 3639-3653.
[35] M. Sheikholeslami, M. Gorji-Bandpy, S.M. Seyyedi, D.D. Ganji, H.B. Rokni, S. Soleimani, Application of LBM in simulation of natural convection in a nanofluid filled square cavity with curve boundaries, Powder Technology, 247 (2013) 87-94.