[1] F.I. Doshmanziari, A.E. Zohir, H.R. Kharvani, D. Jalali-Vahid, M.R. Kadivar, Characteristics of heat transfer and flow of Al2O3/water nanofluid in a spiral-coil tube for turbulent pulsating flow, Heat Mass Transfer, (2015)1-16.
[2] C. Pang, J.W. Lee, Y.T. Kang, Enhanced thermal conductivity of nanofluids by nanoconvection and percolation network, Heat Mass Transfer, (2015) 1-10.
[3] D.A. Wolf-Gladrow, Lattice-Gas Cellular Automata and Lattice Boltzmann Models, in, Springer-Verlag Berlin Heidelberg, 2000.
[4] E. Aslan, I. Taymaz, A.C. Benim, Investigation of LBM curved boundary treatments for unsteady flows, European Journal of Mechanics - B/Fluids, 51 (2015)68-74.
[5] E. Abu-Nada, H.F. Oztop, I. Pop, Effects of surface waviness on heat and fluid flow in a nanofluid filled closed space with partial heating, Heat Mass Transfer, (2015) 1-13.
[6] L. Zhou, Y. Xuan, Q. Li, Multiscale simulation of flow and heat transfer of nanofluid with lattice Boltzmann method, International Journal of Multiphase Flow, 36(5)(2010) 364-374.
[7] G.R. Kefayati, S.F. Hosseinizadeh, M. Gorji, H. Sajjadi, Lattice Boltzmann simulation of natural convection in tall enclosures using water/SiO2 nanofluid, International Communications in Heat and Mass Transfer, 38(6)(2011) 798-805.
[8] G.R. Kefayati, Lattice Boltzmann simulation of MHD natural convection in a nanofluid-filled cavity with sinusoidal temperature distribution, Powder Technology,243 (2013) 171-183.
[9] H. Nemati, M. Farhadi, K. Sedighi, E. Fattahi, A.A.R.Darzi, Lattice Boltzmann simulation of nanofluid in liddriven cavity, International Communications in Heat and Mass Transfer, 37(10) (2010) 1528-1534.
[10] F.-H. Lai, Y.-T. Yang, Lattice Boltzmann simulation of natural convection heat transfer of Al2O3/water nanofluids in a square enclosure, International Journal of Thermal Sciences, 50(10) (2011) 1930-1941.
[11] Y. Guo, D. Qin, S. Shen, R. Bennacer, Nanofluid multi-phase convective heat transfer in closed domain: Simulation with lattice Boltzmann method, International Communications in Heat and Mass Transfer, 39(3)(2012) 350-354.
[12] Y.-T. Yang, F.-H. Lai, Lattice Boltzmann simulation of heat transfer and fluid flow in a microchannel with nanofluids, Heat Mass Transfer, 47(10) (2011) 1229-1240.
[13] ] W.N. Zhou, Y.Y. Yan, J.L. Xu, A lattice Boltzmann simulation of enhanced heat transfer of nanofluids, International Communications in Heat and Mass Transfer, 55(0) (2014) 113-120.
[14] ] H. Bararnia, K. Hooman, D.D. Ganji, Natural Convection in a Nanofluids-Filled Portioned Cavity: The Lattice-Boltzmann Method, Numerical Heat Transfer, Part A: Applications, 59(6) (2011) 487-502.
[15] H. Sajjadi, M. Gorji, G.H.R. Kefayati, D.D. Ganji, Lattice Boltzmann Simulation of Turbulent Natural Convection in Tall Enclosures Using Cu/Water Nanofluid, Numerical Heat Transfer, Part A: Applications, 62(6) (2012) 512-530.
[16] S.K. Das, S.U.S. Choi, H.E. Patel, Heat Transfer in Nanofluids—A Review, Heat Transfer Engineering, 27(10) (2006) 3-19.
[17] ] Z. Haddad, C. Abid, A.A. Mohamad, O. Rahli, S.Bawazer, Natural convection of silica–water nanofluids based on experimental measured thermophysical properties: critical analysis, Heat Mass Transfer, (2015)1-15.
[18] J.C. Maxwell, A treatise on electricity and magnetism, Unabridged 3rd ed., Dover Publications, New York,N.Y., 1954.
[19] R.L. Hamilton, O.K. Crosser, Thermal Conductivity of Heterogeneous Two-Component Systems, Industrial & Engineering Chemistry Fundamentals, 1(3) (1962) 187-191.
[20] J. Sarkar, A critical review on convective heat transfer correlations of nanofluids, Renewable and Sustainable Energy Reviews, 15(6) (2011) 3271-3277.
[21] Y. Xuan, Z. Yao, Lattice Boltzmann model for nanofluids, Heat Mass Transfer, 41(3) (2005) 199-205.
[22] C. Qi, Y. He, S. Yan, F. Tian, Y. Hu, Numerical simulation of natural convection in a square enclosure filled with nanofluid using the two-phase Lattice Boltzmann method, Nanoscale Res Lett, 8(1) (2013) 1-16.
[23] A.C. Benim, E. Aslan, I. Taymaz, Lattice Boltzmann Method for Laminar Forced Convection in a Channel with a Triangular Prism, 42(4) (2011) 359-377.
[24] Z. Guo, C. Zheng, B. Shi, An extrapolation method for boundary conditions in lattice Boltzmann method,Physics of Fluids (1994-present), 14(6) (2002) 2007-2010.
[25] O. Filippova, D. Hänel, Grid Refinement for Lattice-BGK Models, Journal of Computational Physics, 147(1)(1998) 219-228.
[26] ] R. Mei, L.-S. Luo, W. Shyy, An Accurate Curved Boundary Treatment in the Lattice Boltzmann Method, Journal of Computational Physics, 155(2) (1999) 307-330.
[27] Y.Y. Yan, Y.Q. Zu, Numerical simulation of heat transfer and fluid flow past a rotating isothermal cylinder – A LBM approach, International Journal of Heat and Mass Transfer, 51(9–10) (2008) 2519-2536.
[28] C. Pan, L.-S. Luo, C.T. Miller, An evaluation of lattice Boltzmann schemes for porous medium flow simulation, Computers & Fluids, 35(8–9) (2006) 898-909.
[29] J. Wang, D. Wang, P. Lallemand, L.-S. Luo, Lattice Boltzmann simulations of thermal convective flows in two dimensions, Computers & Mathematics with Applications, 65(2) (2013) 262-286.
[30] D. Contrino, P. Lallemand, P. Asinari, L.-S. Luo, Lattice-Boltzmann simulations of the thermally driven 2D square cavity at high Rayleigh numbers, Journal of Computational Physics, 275(0) (2014) 257-272.
[31] G. Strang, On the Construction and Comparison of Difference Schemes, SIAM Journal on Numerical Analysis, 5(3) (1968) 506-517.
[32] H. Chen, Y. Ding, Y. He, C. Tan, Rheological behavior of ethylene glycol based titania nanofluids, Chemical Physics Letters, 444(4–6) (2007) 333-337.
[33] C. He, G. Ahmadi, Particle deposition in a nearly developed turbulent duct flow with electrophoresis, Journal of Aerosol Science, 30(6) (1999) 739-758.
[34] K. Khanafer, K. Vafai, M. Lightstone, Buoyancydriven heat transfer enhancement in a two-dimensional enclosure utilizing nanofluids, International Journal of Heat and Mass Transfer, 46(19) (2003) 3639-3653.
[35] M. Sheikholeslami, M. Gorji-Bandpy, S.M. Seyyedi, D.D. Ganji, H.B. Rokni, S. Soleimani, Application of LBM in simulation of natural convection in a nanofluid filled square cavity with curve boundaries, Powder Technology, 247 (2013) 87-94.