ارائه فرمولاسیون اجزا محدود جهت تحلیل رفتار دینامیکی میکروروتورها براساس نظریه گرادیان کرنش

نوع مقاله : مقاله پژوهشی

نویسندگان

دانشکده مهندسی مکانیک، دانشگاه صنعتی شریف، تهران، ایران

چکیده

چکیده: در این مقاله برای اولین بار فرمولاسیون اجزا محدود سه بعدی سامانه روتور، متشکل از میکروشافت دوار و دیسک‌های متصله براساس نظریه گرادیان کرنشی به منظور بررسی رفتار دینامیکی یا مشخصات ارتعاشاتی این سامانه ارائه شده است. مدل مذکور این امکان را فراهم می‌کند که ضمن در نظر گرفتن اثرات ناشی از قرار داشتن هندسه سامانه در ابعاد میکرو، تأثیرات مربوط به غیرصلب بودن یاتاقان‌ها، میرایی داخلی و نامیزانی در میکروروتور را مورد مطالعه قرار دهد. برای ارائه این فرمولاسیون، در ابتدا روابط مربوط به انرژی کرنشی سامانه براساس نظریه گرادیان کرنشی و انرژی جنبشی سامانه با وجود نامیزانی در دیسک حین حرکت عرضی، همراه با جملات مربوط به اینرسی ناشی از دوران و گشتاور ژیرسکوپیک بیان گردیده‌اند. سپس با استفاده از اصل تعمیم یافته همیلتون به منظور دستیابی به فرم ضعیف شده معادلات و تقریب متغیرهای مربوط به مؤلفه‌های جابه‌جایی عرضی میکروروتور
با توابع شکل مناسب، معادلات حرکت گسسته سازی شده‌اند و برای اولین بار ماتریس‌های جرم شافت و دیسک، اینرسی دورانی شافت و دیسک، میرایی یاتاقان، ژیرسکوپیکی شافت و دیسک، سختی و نیز ماتریس چرخشی براساس نظریه گرادیان کرنش برای سامانه روتور تعیین شده‌اند. به عنوان مثال‌هایی، مشخصات ارتعاشاتی سامانه میکروروتوری و نیز پاسخ سامانه در برابر حضور نامیزانی در دیسک آن ارائه شده است. نتایج عددی ارائه شده بعد از صحه‌گذاری مدل پیشنهادی، بیانگر تأثیر بارز ثابت مادی مرتبۀ بالابر مشخصات ارتعاشاتی میکروروتور شامل بسامدهای طبیعی، سرعت دورانی بحرانی، سرعت دورانی در آستانه ناپایداری سامانه و همچنین پاسخ سامانه در اثر حضور نامیزانی جرمی در دیسک می‌باشد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Finite Element Analysis of Vibration Behavior of Micro-Rotors Utilizing a Developed Strain Gradient-Based Beam Element

نویسندگان [English]

  • M. Hashemi
  • M. Asghari
Mechanical Engineering Department, Sharif University of Technology, Tehran, Iran
چکیده [English]

ABSTRACT: In this paper, a three-dimensional finite element model is developed based on the strain gradient theory to investigate the vibration characteristics of micro-rotors. The model is not only capable of dealing with small-size effects, but also the flexibility of bearings, internal damping and mass eccentricity in the system. The expressions related to the strain energy of the shaft of the microrotor are derived on the basis of strain gradient theory together with the kinetic energy of the system considering mass eccentricity in the disk and rotary inertia and gyroscopic effects of the rotating shaftdisk
system. By using the extended Hamilton’s principle to obtain weak forms of governing equations and approximating displacement components by special interpolation functions which can be used to model a strain gradient based micro-beam, equations of the motion are discretized into a finite element form. The natural frequencies, critical speeds and the threshold of instability rotational speed of the micro-rotor are obtained by transforming discretized equations of motion into state space form. The response of the micro rotor under excitation of the mass eccentricity of the disk in forced vibrations is
also presented. Numerical results show profound effects of higher order material constant on vibration characteristics of the micro-rotor.

کلیدواژه‌ها [English]

  • Micro-rotor
  • Strain gradient theory
  • Forced and free vibrations
  • Flexible bearing
  • Mass eccentricity
[1] A.H. Epstein, S.D. Senturia, G. Anathasuresh, A.Ayon, K. Breuer, K.-S. Chen, F.E. Ehrich, G. Gauba, R. Ghodssi, C. Groshenry, S. Jacobson, J.H. Lang, C-C Lin, A. Mehra, J. O. Mur Miranda, S. Nagle, D. J. Orr, E. Piekos, M. A. Schmidt, G. Shirley, S.M. Spearing,C.S. Tan, Y-S. Tzeng, I.A. Waitz, Power MEMS and microengines, in: IEEE Transducers ‘97 Conference, Chicago, IL, June 1997.
[2] D. Schubert, Mems-Concept Using Micro Turbines for Satellite Power Supply, Solar Power, InTech, (2012) 195-210.
[3] L.G. Fréchette, C. Lee, S. Arslan, Y.-C. Liu, Prelimanry design of a MEMS steam turbine power plant-on-achip, in: 3rd Int’l Workshop on Micro & Nano Tech. for Power Generation & Energy Conv. (PowerMEMS’03), Makuhari, Japan, 2003.
[4] J.H. Lang, Multi-Wafer Rotating MEMS Machines, Turbines, Generators, and Engines, Springer, 2009.
[5] J.S. Stolken, A.G. Evans, Microbend test method for measuring the plasticity length scale, Journal of Acta Materialia, 46(14) (1998) 5109-5115.
[6] D.C.C. Lam, F.Yang, A.C.M. Chong, J.Wang, P.Tong, Experiments and theory in strain gradient elasticity, Journal of the Mechanics and Physics of Solids, 51 (2003) 1477-1508.
[7] A.W. McFarland, J.S. Colton, Role of material microstructure in plate stiffness with relevance to microcantilever sensors, , Journal of Micromechanics and Microengineering, 15(5) (2005) 1060-1067.
[8] R.D. Mindlin, Second gradient of strain and surfacetension in linear elasticity, International Journal of Solids and Structures, 1(4) (1965) 417-438.
[9] R.D. Mindlin, N.N. Eshel, On first strain-gradient theories in linear elasticity, International Journal of Solids and Structures, 4(1) (1968) 109-124.
[10] S. Kong, S. Zhou, Z. Nie, K. Wang, Static and dynamic analysis of micro beams based on strain gradient elasticity theory, International Journal of Engineering Science, 47 (2009) 487-498.
[11] B. Akgöz, Ö. Civalek, Strain gradient elasticity and modified couple stress models for buckling analysis of axially loaded micro-scaled beams, International Journal of Engineering Science, 49(11) (2011) 1268-1280.
[12] B. Akgöz, Ö. Civalek, Analysis of micro-sized beams for various boundary conditions based on the strain gradient elasticity theory, Archive of Applied Mechanics, 82(3) (2012) 423-443.
[13] B. Wang, J. Zhao, S. Zhou, A microscale Timoshenko beam model based on strain gradient elasticity theory, European Journal of Mechanics A/Solids, 29 (2010) 591-599.
[14] R. Ansari, R. Gholami, S. Sahmani, Free vibration analysis of size-dependent functionally graded microbeams based on the strain gradient Timoshenko beam theory, Composite Structures 94 (2011) 221-228.
[15] R.G. R. Ansari, M. Faghih Shojaei, V. Mohammadi, S. Sahmani, Size-dependent bending, buckling and free vibration of functionally graded Timoshenko  microbeams based on the most general strain gradient theory, Composite Structures 100 (2013) 385-397.
[16] M.H. Kahrobaiyan, M. Asghari, M. Rahaeifard, M.T. Ahmadian, A nonlinear strain gradient beam formulation, International Journal of Engineering Science 49 (2011)1256-1267.
[17] M.H. Ghayesh, M. Amabili, H. Farokhi, Nonlinear forced vibrations of a microbeam based on the strain gradient elasticity theory, International Journal of Engineering Science, 63 (2013) 52-60.
[18] M. Asghari, M.H. Kahrobaiyan, M. Nikfar, M.T. Ahmadian, A size-dependent nonlinear Timoshenko microbeam model based on the strain gradient theory, Acta Mechanica, 223 (2012) 1233-1249.
[19] R. Ansari, R. Gholami, M.A. Darabi, A nonlinear Timoshenko beam formulation based on strain gradient theory, Journal of Mechanics of Materials and Structures, 7(2) (2012) 195-211.
[20] M. Asghari, M., Hashemi, Flexural vibration characteristics of micro-rotors based on the Strain gradient theory, International Journal of Applied Mechanics, 7(5) (2015) 1550075.
[21] M. Hashemi, M. Asghari, Analytical study of threedimensional flexural vibration of micro-rotating shafts with eccentricity utilizing the strain gradient theory”. Meccanica 51(6) (2016) 1435-1444.
[22] G. Genta, Consistent matrices in rotor dynamics, Meccanica, 20 (1985) 235-248.
[23] M. Lalanne, G. Ferraris, Rotordynamics prediction in engineering. 2nd edition, Wiley, 1998.
[24] H.D. Nelson, E.S. Zorzi, Finite element simulation of rotor-bearing systems with internal damping, Journal of Engineering for Power, 71 (1977) 71-76.
[25] L. Forrai, Stability analysis of symmetrical rotor-bearing systems with internal damping using finite element method, Proceeding of the International Gas Turbine and Aeroengine Congress and Exhibition, Birmingham, UK, 1996.
[26] L. Forrai, A finite element model for stabiliy analysis of symmetrical rotor systems with internal damping, Journal of Computational and Applied Mechanics, 1(1), (2000) 37-47.
[27] M.H. Kahrobaiyan, M. Asghari, M.T. Ahmadian, Strain gradient beam element, Finite Elements in Analysis and Design, 68 (2013) 63-75.
[28] H. M. Shodja, F. Ahmadpoor, A. Tehranchi, Calculation of the additional constants for fcc materials in second strain gradient elasticity: Behavior of a nano-size Bernoulli-Euler beam with surface effects, Journal of Applied Mechanics, 79 (2012).