[1] A.H. Epstein, S.D. Senturia, G. Anathasuresh, A.Ayon, K. Breuer, K.-S. Chen, F.E. Ehrich, G. Gauba, R. Ghodssi, C. Groshenry, S. Jacobson, J.H. Lang, C-C Lin, A. Mehra, J. O. Mur Miranda, S. Nagle, D. J. Orr, E. Piekos, M. A. Schmidt, G. Shirley, S.M. Spearing,C.S. Tan, Y-S. Tzeng, I.A. Waitz, Power MEMS and microengines, in: IEEE Transducers ‘97 Conference, Chicago, IL, June 1997.
[2] D. Schubert, Mems-Concept Using Micro Turbines for Satellite Power Supply, Solar Power, InTech, (2012) 195-210.
[3] L.G. Fréchette, C. Lee, S. Arslan, Y.-C. Liu, Prelimanry design of a MEMS steam turbine power plant-on-achip, in: 3rd Int’l Workshop on Micro & Nano Tech. for Power Generation & Energy Conv. (PowerMEMS’03), Makuhari, Japan, 2003.
[4] J.H. Lang, Multi-Wafer Rotating MEMS Machines, Turbines, Generators, and Engines, Springer, 2009.
[5] J.S. Stolken, A.G. Evans, Microbend test method for measuring the plasticity length scale, Journal of Acta Materialia, 46(14) (1998) 5109-5115.
[6] D.C.C. Lam, F.Yang, A.C.M. Chong, J.Wang, P.Tong, Experiments and theory in strain gradient elasticity, Journal of the Mechanics and Physics of Solids, 51 (2003) 1477-1508.
[7] A.W. McFarland, J.S. Colton, Role of material microstructure in plate stiffness with relevance to microcantilever sensors, , Journal of Micromechanics and Microengineering, 15(5) (2005) 1060-1067.
[8] R.D. Mindlin, Second gradient of strain and surfacetension in linear elasticity, International Journal of Solids and Structures, 1(4) (1965) 417-438.
[9] R.D. Mindlin, N.N. Eshel, On first strain-gradient theories in linear elasticity, International Journal of Solids and Structures, 4(1) (1968) 109-124.
[10] S. Kong, S. Zhou, Z. Nie, K. Wang, Static and dynamic analysis of micro beams based on strain gradient elasticity theory, International Journal of Engineering Science, 47 (2009) 487-498.
[11] B. Akgöz, Ö. Civalek, Strain gradient elasticity and modified couple stress models for buckling analysis of axially loaded micro-scaled beams, International Journal of Engineering Science, 49(11) (2011) 1268-1280.
[12] B. Akgöz, Ö. Civalek, Analysis of micro-sized beams for various boundary conditions based on the strain gradient elasticity theory, Archive of Applied Mechanics, 82(3) (2012) 423-443.
[13] B. Wang, J. Zhao, S. Zhou, A microscale Timoshenko beam model based on strain gradient elasticity theory, European Journal of Mechanics A/Solids, 29 (2010) 591-599.
[14] R. Ansari, R. Gholami, S. Sahmani, Free vibration analysis of size-dependent functionally graded microbeams based on the strain gradient Timoshenko beam theory, Composite Structures 94 (2011) 221-228.
[15] R.G. R. Ansari, M. Faghih Shojaei, V. Mohammadi, S. Sahmani, Size-dependent bending, buckling and free vibration of functionally graded Timoshenko microbeams based on the most general strain gradient theory, Composite Structures 100 (2013) 385-397.
[16] M.H. Kahrobaiyan, M. Asghari, M. Rahaeifard, M.T. Ahmadian, A nonlinear strain gradient beam formulation, International Journal of Engineering Science 49 (2011)1256-1267.
[17] M.H. Ghayesh, M. Amabili, H. Farokhi, Nonlinear forced vibrations of a microbeam based on the strain gradient elasticity theory, International Journal of Engineering Science, 63 (2013) 52-60.
[18] M. Asghari, M.H. Kahrobaiyan, M. Nikfar, M.T. Ahmadian, A size-dependent nonlinear Timoshenko microbeam model based on the strain gradient theory, Acta Mechanica, 223 (2012) 1233-1249.
[19] R. Ansari, R. Gholami, M.A. Darabi, A nonlinear Timoshenko beam formulation based on strain gradient theory, Journal of Mechanics of Materials and Structures, 7(2) (2012) 195-211.
[20] M. Asghari, M., Hashemi, Flexural vibration characteristics of micro-rotors based on the Strain gradient theory, International Journal of Applied Mechanics, 7(5) (2015) 1550075.
[21] M. Hashemi, M. Asghari, Analytical study of threedimensional flexural vibration of micro-rotating shafts with eccentricity utilizing the strain gradient theory”. Meccanica 51(6) (2016) 1435-1444.
[22] G. Genta, Consistent matrices in rotor dynamics, Meccanica, 20 (1985) 235-248.
[23] M. Lalanne, G. Ferraris, Rotordynamics prediction in engineering. 2nd edition, Wiley, 1998.
[24] H.D. Nelson, E.S. Zorzi, Finite element simulation of rotor-bearing systems with internal damping, Journal of Engineering for Power, 71 (1977) 71-76.
[25] L. Forrai, Stability analysis of symmetrical rotor-bearing systems with internal damping using finite element method, Proceeding of the International Gas Turbine and Aeroengine Congress and Exhibition, Birmingham, UK, 1996.
[26] L. Forrai, A finite element model for stabiliy analysis of symmetrical rotor systems with internal damping, Journal of Computational and Applied Mechanics, 1(1), (2000) 37-47.
[27] M.H. Kahrobaiyan, M. Asghari, M.T. Ahmadian, Strain gradient beam element, Finite Elements in Analysis and Design, 68 (2013) 63-75.
[28] H. M. Shodja, F. Ahmadpoor, A. Tehranchi, Calculation of the additional constants for fcc materials in second strain gradient elasticity: Behavior of a nano-size Bernoulli-Euler beam with surface effects, Journal of Applied Mechanics, 79 (2012).