بررسی اثر لغزش سرعت و پرش دما بر انتقال حرارت نانوسیال در میکروکانالی تحت شار حرارتی ثابت با روش شبکه ی بولتزمن

نوع مقاله : مقاله پژوهشی

نویسندگان

دانشکده مهندسی مکانیک، دانشگاه گیلان، رشت، ایران

چکیده

در این مقاله اثر لغزش سرعت و پرش دما بر مشخصه های جریان و انتقال حرارتی نانوسیال آب - آلومینا در یک میکروکانال دو بعدی که در صفحه پایین تحت شار حرارتی ثابت و در صفحه ی بالا عایق است، با روش شبکه ی بولتزمن مورد مطالعه قرار گرفته است. مساله مورد نظر در عدد رینولدز 5، برای سیال پایه و نانو سیال با کسر حجمی 02 / 0 و 04 / 0 در شرایط عدم لغزش و در ضرایب لغزش 04 / 0 و 1/ 0 و نیز در قطر های نانوذرات 5 تا 50 نانومتر بررسی شده است. نتایج نشان داد که به طور کلی استفاده از سطوح آبگریز ضمن کاهش محسوس تنش برشی دیواره، در شرایط شار حرارتی ثابت بر خلاف شرایط دما ثابت نه تنها باعث کاهش بازدهی انتقال حرارتی میکروکانال نمی شود، بلکه تا حدودی بازدهی آن را افزایش می دهد. همچنین مشخص شد که اثر پرش دمایی بر عدد ناسلت میانگین، در سیال پایه بیشتر از نانوسیال است و با افزایش ضریب لغزش بیشتر می شود. بطوریکه در نانو سیال با کسر حجمی 04 / 0، با افزایش ضریب لغزش بی بعد، عدد ناسلت میانگین به صورت پیوسته افزایش پیدا می کند ولی در سیال پایه این روند ابتدا صعودی و سپس نزولی است.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Investigation of the Effect of Velocity Slip and Temperature Jump on the Heat Transfer of Nanofluid in a Microchannel Under Constant Heat Flux with Lattice Boltzmann Method

نویسندگان [English]

  • M. Kalteh
  • A. Alipour Lalami
Mechanical Engineering Department, University of Guilan, Rasht, Iran
چکیده [English]

In this article, the effect of velocity slip and temperature jump on the flow and heat transfer characteristics of Al2O3 – Water nanofluid in a microchannel with insulated upper wall and constant heat flux on the lower one, is investigated using the lattice Boltzmann method. The problem is solved at Re equal to 5, for base fluid and nanofluid with 0.02 and 0.04 volume fractions, no-slip and slip conditions with 0.04 and 0.1 slip coefficients and also at 5 to 50 nm nanoparticle diameters. The results show that, in general, using the hydrophobic surfaces in addition to making a considerable reduction in wall shear stress, somewhat increases the heat transfer efficacy at uniform wall heat flux condition that can not be seen in the constant wall temperature situations. Also, it is shown that the effect of temperature jump on the average Nusselt number, is more for base fluid than the nanofluid and increases for higher slip coefficients. For nanofluid with 0.04 volume fraction, the average Nusselt number increases continuously with slip coefficient but, for base liquid, firstly it increases and then decreases.

کلیدواژه‌ها [English]

  • Nanofluid
  • Microchannel
  • Temperature jump
  • Constant heat flux
  • Lattice Boltzmann method
[1] A. Akbarinia, M. Abdolzadeh, R. Laur, Critical investigation of heat transfer enhancement using nanofluids in microchannels with slip and non-slip flow regimes, Applied Thermal Engineering, 31(4) (2011) 556-565.
[2] K.C. Toh, X.Y. Chen, J.C. Chai, Numerical computation of fluid flow and heat transfer in microchannels, International Journal of Heat and Mass Transfer, 45(26) (2002) 5133-5141.
[3] A.Ramiar, A.A.Ranjbar, The effect of viscous dissipation and variable properties on nanofluids flow in two dimensional microchannels, International Journal of Engineering-Transactions A: Basics, 24(2) (2012) 131-142.
[4] S.G. Kandlikar, S. Garimella, D. Li, S. Colin, M.R. King, Heat Transfer and Fluid Flow in Minichannels and Microchannels, second ed., Elsevier, UK, 2014.
[5] J. Amani, A.A.A. Aarani, Experimental Study on Heat Transfer and Pressure Drop of TiO2- Water Nanofluid, Amirkabir Journal of Science & Research (Mechanical Engineering), 46(1) (2014) 79-88. (In Persian)
[6] S.Z. Heris, Z. Edalati, S.H. Noie, The Comparison between Al2O3/water and CuO/water nanofluids experimental heat transfer performance inside triangular duct, Amirkabir Journal of Science & Research (Mechanical Engineering), 47(1) (2015) 91-99. (In Persian)
[7] Y. Zhou, R. Zhang, I. Staroselsky, H. Chen, W.T. Kim, M.S. Jhon, Simulation of micro- and nano-scale flows via the lattice Boltzmann method, Physica A: Statistical Mechanics and its Applications, 362(1) (2006) 68-77.
[8] Y.T. Yang, F.H. Lai, Lattice Boltzmann simulation of heat transfer and fluid flow in a microchannel with nanofluids, Heat Mass Transfer, 47(10) (2011) 1229–1240.
[9] D.C. Tretheway, C.D. Meinhart, Apparent fluid slip at hydrophobic microchannel walls, Physics of fluids, 14(3) (2002) L9-L12.
[10] G.D. Ngoma, F. Erchiqui, Heat flux and slip effects on liquid flow in a microchannel, International Journal of Thermal Sciences, 46(11) (2007) 1076-1083.
[11] A. Raisi, B. Ghasemi, S. Aminossadati, A numerical study on the forced convection of laminar nanofluid in a microchannel with both slip and no-slip conditions, Numerical Heat Transfer, Part A: Applications, 59(2) (2011) 114-129.
[12] A. Zarghami, M.J. Maghrebi, J. Ghasemi, Simulation of Viscous flows using finite volume method - Lattice Boltzmann, Mechanical Engineering Majlesi, 4(2) (2011) 11-19. (In Persian)
[13] A.A. Mohamad, Lattice Boltzmann Method, Springer, New York, 2011.
[14] H. Hasani, Simulation of nanofluid free convection heat transfer in an L-shaped enclosure with lattice Boltzmann method, MSc Thesis of Mechanical Engineering, University of Guilan, Rasht-Iran, 2013. (In Persian)
[15] J. Wang, M. Wang, Z. Li, A lattice Boltzmann algorithm for fluid–solid conjugate heat transfer, International journal of thermal sciences, 46(3) (2007) 228-234.
[16] S. Succi, Mesoscopic modeling of slip motion at fluid-solid interfaces with heterogeneous catalysis, Physical review letters, 89(6) (2002) 064502.
[17] A. D’Orazio, S. Succi, Boundary conditions for thermal lattice Boltzmann simulations, in: International Conference on Computational Science, Springer, 2003, pp. 977-986.
[18] A. Karimipour, A.H. Nezhad, A. D’Orazio, M.H. Esfe, M.R. Safaei, E. Shirani, Simulation of copper–water nanofluid in a microchannel in slip flow regime using the lattice Boltzmann method, European Journal of Mechanics-B/Fluids, 49 (2015) 89-99.
[19] A. D'Orazio, Z. Nikkhah, A. Karimipour, Simulation of copper–water nanofluid in a microchannel in slip flow regime using the lattice Boltzmann method with heat flux boundary condition, in: Journal of Physics: Conference Series, IOP Publishing, 2015, pp. 012029.
[20] M. Kalteh, A. Abbassi, M. Saffar-Avval, A. Frijns, A. Darhuber, J. Harting, Experimental and numerical investigation of nanofluid forced convection inside a wide microchannel heat sink, Applied Thermal Engineering, 36 (2012) 260-268.
[21] M. Corcione, Heat transfer features of buoyancy-driven nanofluids inside rectangular enclosures differentially heated at the sidewalls, International Journal of Thermal Sciences, 49(9) (2010) 1536-1546.
[22] C.H. Chon, K.D. Kihm, S.P. Lee, S.U. Choi, Empirical correlation finding the role of temperature and particle size for nanofluid (Al2O3) thermal conductivity enhancement, Applied Physics Letters, 87(15) (2005) 153107.
[23] O. Aydın, M. Avcı, Viscous-dissipation effects on the heat transfer in a Poiseuille flow, Applied Energy, 83(5) (2006) 495-512.
[24] N.A.C. Sidik, M. Khakbaz, L. Jahanshaloo, S. Samion, A.N. Darus, Simulation of forced convection in a channel with nanofluid by the lattice Boltzmann method, Nanoscale research letters, 8(1) (2013) 178.
[25] P.J. Dellar, Incompressible limits of lattice Boltzmann equations using multiple relaxation times, Journal of Computational Physics, 190(2) (2003) 351-370.
[26] R. Zarita, M. Hachemi, Microchannel fluid flow and heat transfer by lattice boltzmann method, (2014).
[27] H. Hassanzadeh, Modeling heat and mass transfer in laminar forced flow between parallel plates channel imposed to suction or injection, Iranian Journal of Hydrogen & Fuel Cell, 2(1) (2015) 35-46.
[28] R.K. Shah, A.L. London, Laminar flow forced convection in ducts: a source book for compact heat exchanger analytical data, Academic press, 2014.
[29] S. Aminossadati, A. Raisi, B. Ghasemi, Effects of magnetic field on nanofluid forced convection in a partially heated microchannel, International Journal of Non-Linear Mechanics, 46(10) (2011) 1373-1382.
[30] A. Bejan, Convection Heat Transfer, Third ed., J. Wiley and Sons, NewYork, 2004.
[31] F.M. White, Viscous Fluid Flow, Third ed., McGraw Hill, NewYork, 2006.