[1] A. Akbarinia, M. Abdolzadeh, R. Laur, Critical investigation of heat transfer enhancement using nanofluids in microchannels with slip and non-slip flow regimes, Applied Thermal Engineering, 31(4) (2011) 556-565.
[2] K.C. Toh, X.Y. Chen, J.C. Chai, Numerical computation of fluid flow and heat transfer in microchannels, International Journal of Heat and Mass Transfer, 45(26) (2002) 5133-5141.
[3] A.Ramiar, A.A.Ranjbar, The effect of viscous dissipation and variable properties on nanofluids flow in two dimensional microchannels, International Journal of Engineering-Transactions A: Basics, 24(2) (2012) 131-142.
[4] S.G. Kandlikar, S. Garimella, D. Li, S. Colin, M.R. King, Heat Transfer and Fluid Flow in Minichannels and Microchannels, second ed., Elsevier, UK, 2014.
[5] J. Amani, A.A.A. Aarani, Experimental Study on Heat Transfer and Pressure Drop of TiO2- Water Nanofluid, Amirkabir Journal of Science & Research (Mechanical Engineering), 46(1) (2014) 79-88. (In Persian)
[6] S.Z. Heris, Z. Edalati, S.H. Noie, The Comparison between Al2O3/water and CuO/water nanofluids experimental heat transfer performance inside triangular duct, Amirkabir Journal of Science & Research (Mechanical Engineering), 47(1) (2015) 91-99. (In Persian)
[7] Y. Zhou, R. Zhang, I. Staroselsky, H. Chen, W.T. Kim, M.S. Jhon, Simulation of micro- and nano-scale flows via the lattice Boltzmann method, Physica A: Statistical Mechanics and its Applications, 362(1) (2006) 68-77.
[8] Y.T. Yang, F.H. Lai, Lattice Boltzmann simulation of heat transfer and fluid flow in a microchannel with nanofluids, Heat Mass Transfer, 47(10) (2011) 1229–1240.
[9] D.C. Tretheway, C.D. Meinhart, Apparent fluid slip at hydrophobic microchannel walls, Physics of fluids, 14(3) (2002) L9-L12.
[10] G.D. Ngoma, F. Erchiqui, Heat flux and slip effects on liquid flow in a microchannel, International Journal of Thermal Sciences, 46(11) (2007) 1076-1083.
[11] A. Raisi, B. Ghasemi, S. Aminossadati, A numerical study on the forced convection of laminar nanofluid in a microchannel with both slip and no-slip conditions, Numerical Heat Transfer, Part A: Applications, 59(2) (2011) 114-129.
[12] A. Zarghami, M.J. Maghrebi, J. Ghasemi, Simulation of Viscous flows using finite volume method - Lattice Boltzmann, Mechanical Engineering Majlesi, 4(2) (2011) 11-19. (In Persian)
[13] A.A. Mohamad, Lattice Boltzmann Method, Springer, New York, 2011.
[14] H. Hasani, Simulation of nanofluid free convection heat transfer in an L-shaped enclosure with lattice Boltzmann method, MSc Thesis of Mechanical Engineering, University of Guilan, Rasht-Iran, 2013. (In Persian)
[15] J. Wang, M. Wang, Z. Li, A lattice Boltzmann algorithm for fluid–solid conjugate heat transfer, International journal of thermal sciences, 46(3) (2007) 228-234.
[16] S. Succi, Mesoscopic modeling of slip motion at fluid-solid interfaces with heterogeneous catalysis, Physical review letters, 89(6) (2002) 064502.
[17] A. D’Orazio, S. Succi, Boundary conditions for thermal lattice Boltzmann simulations, in: International Conference on Computational Science, Springer, 2003, pp. 977-986.
[18] A. Karimipour, A.H. Nezhad, A. D’Orazio, M.H. Esfe, M.R. Safaei, E. Shirani, Simulation of copper–water nanofluid in a microchannel in slip flow regime using the lattice Boltzmann method, European Journal of Mechanics-B/Fluids, 49 (2015) 89-99.
[19] A. D'Orazio, Z. Nikkhah, A. Karimipour, Simulation of copper–water nanofluid in a microchannel in slip flow regime using the lattice Boltzmann method with heat flux boundary condition, in: Journal of Physics: Conference Series, IOP Publishing, 2015, pp. 012029.
[20] M. Kalteh, A. Abbassi, M. Saffar-Avval, A. Frijns, A. Darhuber, J. Harting, Experimental and numerical investigation of nanofluid forced convection inside a wide microchannel heat sink, Applied Thermal Engineering, 36 (2012) 260-268.
[21] M. Corcione, Heat transfer features of buoyancy-driven nanofluids inside rectangular enclosures differentially heated at the sidewalls, International Journal of Thermal Sciences, 49(9) (2010) 1536-1546.
[22] C.H. Chon, K.D. Kihm, S.P. Lee, S.U. Choi, Empirical correlation finding the role of temperature and particle size for nanofluid (Al2O3) thermal conductivity enhancement, Applied Physics Letters, 87(15) (2005) 153107.
[23] O. Aydın, M. Avcı, Viscous-dissipation effects on the heat transfer in a Poiseuille flow, Applied Energy, 83(5) (2006) 495-512.
[24] N.A.C. Sidik, M. Khakbaz, L. Jahanshaloo, S. Samion, A.N. Darus, Simulation of forced convection in a channel with nanofluid by the lattice Boltzmann method, Nanoscale research letters, 8(1) (2013) 178.
[25] P.J. Dellar, Incompressible limits of lattice Boltzmann equations using multiple relaxation times, Journal of Computational Physics, 190(2) (2003) 351-370.
[26] R. Zarita, M. Hachemi, Microchannel fluid flow and heat transfer by lattice boltzmann method, (2014).
[27] H. Hassanzadeh, Modeling heat and mass transfer in laminar forced flow between parallel plates channel imposed to suction or injection, Iranian Journal of Hydrogen & Fuel Cell, 2(1) (2015) 35-46.
[28] R.K. Shah, A.L. London, Laminar flow forced convection in ducts: a source book for compact heat exchanger analytical data, Academic press, 2014.
[29] S. Aminossadati, A. Raisi, B. Ghasemi, Effects of magnetic field on nanofluid forced convection in a partially heated microchannel, International Journal of Non-Linear Mechanics, 46(10) (2011) 1373-1382.
[30] A. Bejan, Convection Heat Transfer, Third ed., J. Wiley and Sons, NewYork, 2004.
[31] F.M. White, Viscous Fluid Flow, Third ed., McGraw Hill, NewYork, 2006.