[1] Molaeimanesh, G. and M. H. Akbari (2014). "Water droplet dynamic behavior during removal from a proton exchange membrane fuel cell gas diffusion layer by Lattice-Boltzmann method." Korean journal of chemical engineering 31(4): 598-610.
[2] O'hayre, R., et al. (2016). Fuel cell fundamentals, John Wiley & Sons.
[3] Wang, C.-Y. (2004). "Fundamental models for fuel cell engineering." Chemical reviews 104(10): 4727- 4766.
[4] Larminie, J., et al. (2003). Fuel cell systems explained, J. Wiley Chichester, UK.
[5] Owejan, J. P., et al. (2009). "Water management studies in PEM fuel cells, Part I: Fuel cell design and in situ water distributions." International Journal of Hydrogen Energy 34(8): 3436-3444.
[6] Chen, L., et al. (2010). "Liquid water dynamic behaviors in the GDL and GC of PEMFCs using lattice Boltzmann method." Frontiers in Heat and Mass Transfer (FHMT) 1(2).
[7] Chen, L., et al. (2012). "Numerical investigation of liquid water transport and distribution in porous gas diffusion layer of a proton exchange membrane fuel cell using lattice Boltzmann method." Russian journal of electrochemistry 48(7): 712-726.
[8] Li, H., et al. (2008). "A review of water flooding issues in the proton exchange membrane fuel cell." Journal of Power Sources 178(1): 103-117.
[9] Lenormand, R., et al. (1988). "Numerical models and experiments on immiscible displacements in porous media." Journal of fluid mechanics 189: 165-187..
[10] Mukherjee, P. P., et al. (2009). "Mesoscopic modeling of two-phase behavior and flooding phenomena in polymer electrolyte fuel cells." Electrochimica Acta 54(27): 6861-6875.
[11] Hao, L. and P. Cheng (2010). "Lattice Boltzmann simulations of water transport in gas diffusion layer of a polymer electrolyte membrane fuel cell." Journal of Power Sources 195(12): 3870-3881.
[12] Chen, L., et al. (2012). "Pore-scale flow and mass transport in gas diffusion layer of proton exchange membrane fuel cell with interdigitated flow fields." International Journal of Thermal Sciences 51: 132- 144.
[13] Lee, K.-J., et al. (2009). "Pore-network analysis of two-phase water transport in gas diffusion layers of polymer electrolyte membrane fuel cells." Electrochimica Acta 54(4): 1166-1176..
[14] Ziegler, C. and D. Gerteisen (2009). "Validity of two- phase polymer electrolyte membrane fuel cell models with respect to the gas diffusion layer." Journal of Power Sources 188(1): 184-191.
[15] Yang, X., et al. (2004). "Visualization of liquid water transport in a PEFC." Electrochemical and Solid-State Letters 7(11): A408-A411.
[16] Zhang, F., et al. (2006). "Liquid water removal from a polymer electrolyte fuel cell." Journal of the Electrochemical Society 153(2): A225-A232.
[17] Chen, S. and G. D. Doolen (1998). "Lattice Boltzmann method for fluid flows." Annual review of fluid mechanics 30(1): 329-364.
[18] Chen, S. and G. D. Doolen (1998). "Lattice Boltzmann method for fluid flows." Annual review of fluid mechanics 30(1): 329-364.
[19] Mukherjee, P. P., et al. (2009). "Mesoscopic modeling of two-phase behavior and flooding phenomena in polymer electrolyte fuel cells." Electrochimica Acta 54(27): 6861-6875.
[20] Inamuro, T., et al. (2004). "A lattice Boltzmann method for incompressible two-phase flows with large density differences." Journal of Computational physics 198(2): 628-644.
[21] Daino, M. M. and S. G. Kandlikar (2012). "3D phase- differentiated GDL microstructure generation with binder and PTFE distributions." International Journal of Hydrogen Energy 37(6): 5180-5189..
[22] Shan, X. and H. Chen (1993). "Lattice Boltzmann model for simulating flows with multiple phases and components." Physical Review E 47(3): 1815.
[23] Huang, H., et al. (2007). "Proposed approximation for contact angles in Shan-and-Chen-type multicomponent multiphase lattice Boltzmann models." Physical Review E 76(6): 066701.
[24] Dong, B., et al. (2010). "Simulation of the influence of surface wettability on viscous fingering phenomenon in porous media." Journal of Bionic Engineering 7(3): 267-275..
[25] Huang, H., et al. (2011). "Evaluation of three lattice Boltzmann models for multiphase flows in porous media." Computers & Mathematics with Applications 61(12): 3606-3617..
[26] Jeon, D. H. and H. Kim (2015). "Effect of compression on water transport in gas diffusion layer of polymer electrolyte membrane fuel cell using lattice Boltzmann method." Journal of Power Sources 294: 393-405.
[27] Zou, Q. and X. He (1997). "On pressure and velocity boundary conditions for the lattice Boltzmann BGK model." Physics of fluids 9(6): 1591-1598.
[28] Sinha, P. K., et al. (2007). "Impact of GDL structure and wettability on water management in polymer electrolyte fuel cells." Journal of Materials Chemistry 17(30): 3089-3103.
[29] Pan, C., et al. (2004). "Lattice‐Boltzmann simulation of two‐phase flow in porous media." Water Resources Research 40(1).
[30] Park, J. and X. Li (2008). "Multi-phase micro-scale flow simulation in the electrodes of a PEM fuel cell by lattice Boltzmann method." Journal of Power Sources 178(1): 248-257.
[31] Molaeimanesh, G. and M. Akbari (2014). "Impact of PTFE distribution on the removal of liquid water from a PEMFC electrode by lattice Boltzmann method." International Journal of Hydrogen Energy 39(16): 8401-8409.
[32] Dullien, F. A. (2012). Porous media: fluid transport and pore structure, Academic press.
[33] Gao, Y. (2012). Simulate fluid transport in gas diffusion layers of PEM Fuel Cells using lattice Boltzmann method and X-ray computed tomography, Citeseer.
[34] Kim, K. N., et al. (2015). "Lattice Boltzmann simulation of liquid water transport in microporous and gas diffusion layers of polymer electrolyte membrane fuel cells." Journal of Power Sources 278: 703-717.