تحلیل پایداری و پاسخ دینامیکی استوانۀ پیزوالکتریک جدار نازک، تحت جریان سیال و تحریک هارمونیک خارجی

نوع مقاله : مقاله پژوهشی

نویسندگان

دانشکده فنی و مهندسی، دانشگاه بوعلی سینا، همدان، ایران

چکیده

چکیده: پایداری دینامیکی و ارتعاشات غیرخطی استوانه هوشمند جدار نازک، تحت عبور جریان سیال داخلی، نیروی تحریک متمرکز خارجی و گرادیان حرارتی یکنواخت، در این نوشتار مورد بررسی قرار می‌گیرد. جنس پوسته از مواد پیزوسرامیک مقاوم در برابر سیال در نظر گرفته شده و با استفاده از مدل غیرخطی پوسته استوانه ای مدل سازی می‌شود. جریان سیال عبوری غیر قابلتراکم، غیر چرخشی، غیر لزج و ایزنتروپیک فرض شده و مدل سازی دینامیکی آن نیز با استفاده از تابع اسکالر پتانسیل جریان صورت می‌پذیرد. دستگاه معادلات کوپله شده و غیرخطی حرکت حاکم بر سامانه با استفاده از روش انرژی و بسط مودهای جاب هجایی و الکتریکی حاصل گردیده که با حل دسته معادلات مرتبط با شارژ الکتریکی واجفت می‌گردند. در ادامه ابتدا با حذف جملات غیرخطی در معادلات حرکت و حل مسأله مقدار ویژه مودهای ارتعاشی سامانه، سرعت بحرانی و نواحی پایدار سامانه استخراج گردیده و سپس با استفاده مدل فضای حالت و انتگرال‌گیری عددی مرتبه چهار رانج کوتا پاسخ الکتروترمودینامیکی غیرخطی سامانه حاصل گردیده است. نتایج حاصله ارتباط مستقیم میزان پتانسیل القایی در پوسته با دامنه ارتعاشات عرضی آن را نشان داده که به‌منظور استفاده در هشداردهنده‌های ناپایداری کاربرد دارد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Stability Analyses and Dynamic Response of Fluid Conveyed Thin-Walled Piezoelectric Cylinder Under Harmonic Excitation

نویسندگان [English]

  • A. Shooshtari
  • V. Atabakhshian
Engineering Faculty, Bu-Ali Sina University, Hamedan, Iran
چکیده [English]

ABSTRACT: In this paper, the vibration and instability analyses of a thin-walled smart cylinder subjected to the combined electro-thermo-mechanical loadings as well as internal fluid flow are investigated based on piezoelasticity theory and nonlinear Donnell’s shell theory. The cylinder material is considered to be made of piezo-ceramics as PZT4 to have a better resistance to the fluids. The fluid flow is assumed to be incompressible, inviscid, irrotational and isentropic where its mathematically modeling is performed based on a potential scalar function. The higher order governing equations of motion are directly obtained by minimizing the energy of the system, using Lagrange equation of motions and modal expansion analysis. The obtained governing equations are then solved via the state space problem as well as fourth order numerical integration to obtain the nonlinear electro thermodynamical response of the system. In the numerical results section, the effects of various parameters such as mean flow velocity, aspect ratio, temperature change and excitation frequency on the natural and damping frequencies, electro-thermo-dynamical response and energy spectrum of the system is studied in detail.
It is hoped that the results of this study play an important role to design new instability alert sensors for fluid conveying pipes.

کلیدواژه‌ها [English]

  • Smart materials
  • nonlinear vibration
  • Fluid flow
  • Cylindrical shell
  • Harmonic excitation
[5] H.F. Tiersten, R.D. Mindlin, Forced vibrations of piezoelectric crystal plates, Quarterly of applied Mathematics, 22(2) (1962) 107-119.
[6] T.R. Tauchert, P.J. Beresford, E.L. Wilson, Piezothermoelastic behavior of laminated plate, Journal of Thermal stresses, 15(1) (1992) 25-37.
[7] N.D. Duc, P.H. Cong, V.D. Quang, Nonlinear dynamic and vibration analysis of piezoelectric eccentrically stiffened FGM plates in thermal environment, International Journal of Mechanical Sciences, 115(116)(2016) 711-722.
[8] M. Amabili, F. Pellicano, M.P. PaÏDoussis, NONLINEAR DYNAMICS AND STABILITY OF CIRCULAR CYLINDRICAL SHELLS CONTAINING FLOWING FLUID. PART I: STABILITY, Journal of Sound and Vibration, 225(4) (1999) 655-699.
[9] M. Amabili, Vibration and Stability of Shells and Plates, Cambridge University press, University of parma, Italy,2007.
[10] J. Reddy, C. Wang, Dynamics of fluid-conveying beams, 2004.
[11] A. Ghorbanpour Arani, A.R. Shajari, V. Atabakhshian, S. Amir, A. Loghman, Nonlinear dynamical response of embedded fluid-conveyed micro-tube reinforced by BNNTs, Composites Part B: Engineering, 44(1) (2013) 424-432.
[12] A.A. Alizadeh, H.R. Mirdamadi, Free vibration and divergence instability of pipes conveying fluid with uncertain structural parameters, Modares Mechanical Engineering, 15(4) (2015) 247-254. (In Persian)
[13] M. Rezaee, V.A. Maleki, Vibration analysis of cracked pipe conveying fluid, Modares Mechanical Engineering, 12(1) (2012) 66-76. (In Persian)
[14] I.G.o. Sonics, Ultrasonics, Transducers, C. Resonators, I.G.o. Instrumentation, Measurement, C. Frequency, C. Time, IEEE standard on piezoelectricity, Institute of Electrical and Electronics Engineers, New York, 1978.
[15] Y. Jiashi, An Introduction to the theory of piezoelectricity, 1 ed., Springer US, 2005.
[16] J. Reddy, Theory and Analysis of Elastic Plates and Shells, 2 ed., CRC Press, 2006.
[17] P. Dash, B.N. Singh, Nonlinear free vibration of piezoelectric laminated composite plate, Finite Elem. Anal. Des., 45(10) (2009) 686-694.
[18] Y. Kurylov, M. Amabili, Polynomial versus trigonometric expansions for nonlinear vibrations of circular cylindrical shells with different boundary conditions, Journal of Sound and Vibration, 329(9)(2010) 1435-1449.
[19] M.M. Alinia, S.A.M. Ghannadpour, Nonlinear analysis of pressure loaded FGM plates, Composite Structures, 88(3) (2009) 354-359.
[20] P. P.J, M. J.W., Fox and McDonald's Introduction to Fluid Mechanics, 9 ed., Wiley, 2015.
[21] M.J. Khoshgoftar, A.G. Arani, M. Arefi, Thermoelastic analysis of a thick walled cylinder made of functionally graded piezoelectric material, Smart Materials and Structures, 18(11) (2009) 115007.
[22] Y. Jiashi, An Introduction to the theory of piezoelectricity, 1 ed., Springer US, 2005.
[23] M. Amabili, R. Garziera, VIBRATIONS OF CIRCULAR CYLINDRICAL SHELLS WITH NONUNIFORM CONSTRAINTS, ELASTIC BED AND ADDED MASS. PART III: STEADY VISCOUS EFFECTS ON SHELLS CONVEYING FLUID, Journal of Fluids and Structures, 16(6) (2002) 795-809.
[24] Hooker, W. Matthew, Properties of PZT-Based Piezoelectric Ceramics Between -150 and 250 C, NASA/ CR-1998-208708, Lockheed Martin Engineering and Sciences Co, Hampton, VA United States, 1998.