[1] K.M. Liew, Z.X. Lei, L.W. Zhang , Mechanical analysis of functionally graded carbon nanotube reinforced composites: A review, Composite Structures, 120(1)(2015) 90-97.
[2] C.P. Wu, H.Y. Li, Three-dimensional free vibration analysis of functionally graded carbon nanotubereinforced composite plates with various boundary conditions, Journal of Vibration and Control, 22(1)(2016) 89-107.
[3] L.W. Zhang, W.C. Cui, K.M. Liew, Vibration analysis of functionally graded carbon nanotube reinforced composite thick plates with elastically restrained edges,International Journal of Mechanical Sciences, 103(1)(2015) 9-21.
[4] R. Moradi-Dastjerdi, M. Foroutan, A. Pourasghar,Dynamic analysis of functionally graded nanocomposite cylinders reinforced by carbon nanotube by a mesh-free method, Materials and Design, 44(1) (2013) 256-266.
[5] S. Natarajan, M. Haboussi, G. Manickam, Application of higher-order structural theory to bending and free vibration analysis of sandwich plates with CNT reinforced composite facesheets, Composite Structures,113(1) (2014) 197-207.
[6] H. Wu, S. Kitipornchai, J. Yang, Free vibration and buckling analysis of sandwich beams with functionally graded carbon nanotube-reinforced composite face sheets, International Journal of Structural Stability and Dynamics, 15(7) (2015) 1540011.
[7] K. Mehar, S.K. Panda, A. Dehengia, V.R. Kar, Vibration analysis of functionally graded carbon nanotube reinforced composite plate in thermal environment,Journal of Sandwich Structures and Materials, 18(2)(2016) 151-173.
[8] Z.X. Wang, H.S. Shen, Nonlinear vibration and bending of sandwich plates with nanotube-reinforced composite face sheets, Composites Part B: Engineering, 43(2)(2012) 411-421.
[9] A. Alibeigloo, Free vibration analysis of functionally graded carbon nanotube-reinforced composite cylindrical panel embedded in piezoelectric layers by using theory of elasticity, European Journal of Mechanics A/Solids,44(1) (2014) 104-115.
[10] L.W. Zhang, Z.G. Song, K.M. Liew, Optimal shape control of CNT reinforced functionally graded composite plates using piezoelectric patches, Composites Part B:Engineering, 85(1) (2016) 140-149.
[11] A. Sharma, A. Kumar, C.K. Susheel, R. Kumar, Smart damping of functionally graded nanotube reinforced composite rectangular plates, Composite Structures, 155(1) (2016) 29-44.
[12] E. Pan, Exact solution for simply supported and multilayered magneto-electro-elastic plates, Journal of Applied Mechanics, 68(4) (2001) 608-618.
[13] E. Pan, P.R. Heyliger, Free vibrations of simply supported and multilayered magneto-electro-elastic plates, Journal of Sound and Vibration, 252(3) (2002) 429-442.
[14] M.F. Liu, T.P. Chang, Closed form expression for the vibration problem of a transversely isotropic magnetoelectro-elastic plate, Journal of Applied Mechanic, 77(2)(2010) 024502.
[15] L. Xin, Z. Hu, Free vibration of simply supported and multilayered magneto-electro-elastic plates, Composite Structures, 121(1) (2015) 344-350.
[16] A. Shooshtari, S. Razavi, Vibration analysis of a magnetoelectroelastic rectangular plate based on a higher-order shear eformation theory, Latin American Journal of Solids and Structures, 13(3) (2016) 554-572.
[17] M. Vaezi, M.M. Shirbani, A. Hajnayeb, Free vibration analysis of magneto-electro-elastic microbeams subjected to magneto-electric loads, Physica E: Low-dimensional Systems and Nanostructures, 75(1) (2016) 280-286.
[18] L.L. Ke, Y.S. Wang, Free vibration of size-dependent magneto-electro-elastic nanobeams based on the nonlocal theory, Physica E: Low-dimensional Systems and Nanostructures, 63(1) (2014) 52-61.
[19] Y.S. Li, P. Ma, W. Wang, Bending, buckling, and free vibration of magnetoelectroelastic nanobeam based on nonlocal theory, Journal of Intelligent Material Systems and Structures, 27(9) (2016) 1139-1149.
[20] A.A. Jandaghian, O. Rahmani, Free vibration analysis of magneto-electro-thermo-elastic nanobeams resting on a Pasternak foundation, Smart Materials and Structures,25(3) (2016) 035023.
[21] L.L. Ke, Y.S. Wang, J. Yang, S. Kitipornchai, Free vibration of size-dependent magneto-electro-elastic nanoplates based on the nonlocal theory, Acta Mechanica Sinica, 30(4) (2014) 516-525.
[22] Y.S. Li, Z.Y. Cai, S.Y. Shi, Buckling and free vibration of magnetoelectroelastic nanoplate based on nonlocal theory, Composite Structures, 111(1) (2014) 522-529.
[23] L.L. Ke, Y.S. Wang, J. Yang, S. Kitipornchai, The size-dependent vibration of embedded magneto-electroelastic cylindrical nanoshells, Smart Materials and Structures, 23(12) (2014) 125036.
[24] R. Ansari, R. Gholami, H. Rouhi, Size-dependent nonlinear forced vibration analysis of magneto-electrothermo-elastic Timoshenko nanobeams based upon the nonlocal elasticity, Composite Structures, 126(1) (2015)216-226.
[25] A. Farajpour, M.R. Hairi Yazdi, A. Rastgoo, M.Loghmani, M. Mohammadi, Nonlocal nonlinear plate model for large amplitude vibration of magneto-electroelastic nanoplates, Composite Structures, 140(1) (2016)323-336.
[26] P. Zhu, Z.X. Lei, K.M. Liew, Static and free vibration analyses of carbon nanotube-reinforced composite plates using finite element method with first order shear deformation plate theory, Composite Structures, 94(4)(2012) 1450-1460.
[27] Y. Ootao, Y. Tanigawa, Transient analysis of multilayered magneto-electro-thermoelastic strip due to nonuniform heat supply, Composite Structures, 68(4)(2005) 471-480.
[28] J.N. Reddy, Mechanics of laminated composite plates and shells: theory and analysis, 2nd Edition, CRC Press,2004.
[29] Y. Li, J. Zhang, Free vibration analysis of magnetoelectroelastic plate resting on a Pasternak foundation, Smart Materials and Structures, 23(2) (2014)025002.
[30] Z.X. Wang, H.S. Shen, Nonlinear vibration of nanotubereinforced composite plates in thermal environments,Computational Materials Science, 50(8) (2011) 2319-2330.
[31] J.M.S. Moita, C.M.M. Soares, C.A.M. Soares, Analyses of magneto-electro-elastic plates using a higher order finite element model, Composite Structures, 91(4) (2009)421-426.