[1] S. Abrate, Vibration of non-uniform rods and beams, Journal of sound and vibration, 185(4) (1995) 703-716.
[2] C. Wang, Free vibration of a linked rod, Journal of sound and vibration, 274(1) (2004) 455-459.
[3] W.-J. Hsueh, Free and forced vibrations of stepped rods and coupled systems, Journal of sound and vibration, 226(5) (1999) 891-904.
[4] F. Cortés, M.J. Elejabarrieta, Longitudinal vibration of a damped rod. Part I: Complex natural frequencies and mode shapes, International journal of mechanical sciences, 48(9) (2006) 969-975.
[5] V. Mermertaş, M. Gürgöze, Longitudinal vibrations of rods coupled by a double spring-mass system, Journal of sound and vibration, 202(5) (1997) 748-755.
[6] D. Das, P. Sahoo, K. Saha, Dynamic analysis of non-uniform taper bars in post-elastic regime under body force loading, Applied Mathematical Modelling, 33(11) (2009) 4163-4183.
[7] M. Poorjamshidan, an analytic solution of transversal vibrations and frequency response of quantic nonlinear beam, modares mechanic engineering, 13 (2014) 1-9 - In Persian
[8] L. Cveticanin, Z. Uzelac, Nonlinear longitudinal vibrations of a rod, Journal of Vibration and Control, 5(6) (1999) 827-849.
[9] L. Cveticanin, Application of homotopy-perturbation to non-linear partial differential equations, Chaos, Solitons & Fractals, 40(1) (2009) 221-228.
[10] G. Bojadziev, R. Lardner, Monofrequent oscillations in mechanical systems governed by second order hyperbolic differential equations with small non-linearities, International Journal of Non-Linear Mechanics, 8(4) (1973) 289-302.
[11] A. Munitsyn, Spatial vibrations of a nonlinearly elastic cantilever rod, Russian Engineering Research, 29(6) (2009) 555-558.
[12] S.K. Parashar, U. Von Wagner, Nonlinear longitudinal vibrations of transversally polarized piezoceramics: experiments and modeling, Nonlinear Dynamics, 37(1) (2004) 51-73.
[13] A.C. Luo, On a nonlinear theory of thin rods, Communications in Nonlinear Science and Numerical Simulation, 15(12) (2010) 4181-4197.
[14] S. Narendar, Wave dispersion in functionally graded magneto-electro-elastic nonlocal rod, Aerospace Science and Technology, 51 (2016) 42-51.
[15] Y. Wei, H. Dai, An inverse eigenvalue problem for the finite element model of a vibrating rod, Journal of Computational and Applied Mathematics, (2016).
[16] V. Karman, encyklopadie der math, wissenshaften, 4 (1910) 349.
[17] S. Timoshenko, S. Woinowsky-Krieger, S. Woinowsky-Krieger, Theory of plates and shells, McGraw-hill New York, 1959.
[18] P.G. Ciarlet, A justification of the von Kármán equations, Archive for Rational Mechanics and Analysis, 73(4) (1980) 349-389.
[19] J. G. Guo, L. J. Zhou, S. Y. Zhang, Geometrical nonlinear waves in finite deformation elastic rods, Applied Mathematics and Mechanics (English Edition), 26(5) (2005) 667-674.
[20] Z. f. Liu, S. y. Zhang, Solitary waves in finite deformation elastic circular rod, Applied Mathematics and Mechanics, 27(10) (2006) 1431-1437.
[21] L.Z.Z. Shanyuan, Noninear waves and periodic solution in finite deformation elastic rod, Acta Mechanica Solida Sinica, 1 (2006) 000.
[22] S. y. Zhang, Z. f. Liu, Three kinds of nonlinear dispersive waves in elastic rods with finite deformation, Applied Mathematics and Mechanics, 29(7) (2008) 909-917.
[23] P. Guo, G. Wan, X. Wang, X. Sun, New soliton and periodic solutions for nonlinear wave equation in finite deformation elastic rod, International Journal of Nonlinear Science, 15(2) (2013) 182-192.
[24] J. Shi, X.L. Yan, Q.T. Deng, Solutions for the finite deformation elastic rod nonlinear wave equation, in: Applied Mechanics and Materials, Trans Tech Publ, ( 2014) 358-361.
[25] S. Mousavi, S. Fariborz, Free vibration of a rod undergoing finite strain, in: Journal of Physics: Conference Series, IOP Publishing, (2012) 1-8
[26] A.M. Baghestani, and S.M. Mousavi, Low-Frequency Free Vibration of Rods with Finite Strain, Journal of Applied Nonlinear Dynamics, 1(3) (2014) 85-93.
[27] F. Kaviani, H. R. Mirdamadi, Static Analysis of Bending, Stability, and Dynamic Analysis of Functionally Graded Plates by a Four-Variable Theory, Amirkabir mechanic engineering, 45(2) (2014)- In Persian.
[28]S.S. Rao, Vibration of continuous systems, John Wiley & Sons, 2007.
[29] S. Guo, S. Yang, Longitudinal vibrations of arbitrary non-uniform rods, Acta Mechanica Solida Sinica, 28(2) (2015) 187-199.
[30]L. Li, Y. Hu, X. Li, Longitudinal vibration of size-dependent rods via nonlocal strain gradient theory, International Journal of Mechanical Sciences, 115 (2016) 135-144.
[31]H. Askari, E. Esmailzadeh, D. Younesian, Nonlinear longitudinal vibration solutions of an elastic rod, in: ASME 2013 International Mechanical Engineering Congress and Exposition, American Society of Mechanical Engineers, (2013)
[32]A.H. Nayfeh, D.T. Mook, Nonlinear oscillations, John Wiley & Sons, 2008.
[33]A. Saltelli, K. Chan, E. Scott, Sensitivity analysis Wiley series in probability and statistics, Willey, New York, (2000)
[34] X. Feng, Z.-j. ZOU, J.-c. YIN, C. Jian, Parametric identification and sensitivity analysis for Autonomous Underwater Vehicles in diving plane, Journal of Hydrodynamics, Ser. B, 24(5) (2012) 744-751.