[1] X. Y. Sun, Z. Fu., M. Xia, Y. Xu, Effect of vacancy defect on the tensile behavior of graphene, Theoretical and Applied Mechanics Letters, 4(2014), 051002.
[2] A. Zandiatashbar, G-H. Lee, S.J. An, S. Lee, N. Mathew, M. Terrones, T. Hayashi, C.R. Picu, J. Hone, N. Koratkar, Effect of defects on the intrinsic strength and stiffness of grapheme, Nature Communications, (2014) DOI: 10.1038/ ncomms4186.
[3] L. Murmu, S.C. Pradhan, Buckling of biaxially compressed orthotropic plates at small scales. Mechanics Research Communications, 36(2009).933-938.
[4] M.H. Mahdavi, L.Y. Jiang, X. Sun, Nonlinear vibration and postbuckling analysis of single layer graphene sheet embedded in a polymer matrix, Physica E, 44(2012)1708-1715.
[5] K. Yang, Y. Chen, F. Pan, S. Wang, Y. Ma, Q. Liu, Buckling Behavior of Substrate Supported Graphene Sheets, Materials, 9(32) (2016) DOI:10.3390/ma9010032.
[6] A. Anjomshoa, A.R. Shahidi, B. Hassani, E. Jomehzadeh, Finite element buckling analysis of multi-layered grapheme sheets on elastic substrate based on nonlocal elasticity theory, Applied Mathematical Modelling, 38 (2014) 5934-5955.
[7] D. Karlicic, M. Cajic, P. Kozic, I. Pavlovic, 2015, Temperature effects on the vibration and stability behavior of multi-layered graphene sheets embedded in an elastic medium, Composite Structures, 131(2015) 672-681.
[8] S.C. Pradhan, J.K. Phadikar, Small scale effect on vibration of embedded multilayered graphene sheets based on nonlocal continuum models, Physics Letters A, 373 (2009)1062-1069.
[9] T. Murmu, S. Adhikari, Nonlocal mass nanosensors based on vibrating monolayer graphene sheets, Sensors and Actuators B: Chemical, 188(2013)1319-1327.
[10] D. Karlicic, P. Kozic, R. Pavlovic, Free transverse vibration of nonlocal viscoelastic orthotropic multi-nanoplate system (MNPS) embedded in a viscoelastic medium, Composite Structures, 115 (2014) 89-99.
[11] D. Karlicic, P. Kozic, S. Adhikari, M. Cajic, T. Mutmu, M. Lazarevic, Nonlocal mass-nanosensor model based on the damped vibration of single-layer grapheme sheet influenced by in-plane magnetic field, International Journal of Mechanical Sciences, 96-97 (2015) 132-142.
[12] H.S. Shen, Y-M Xu, C.-L Zhang, Prediction of nonlinear vibration of bilayer graphene sheets in thermal environments via molecular dynamics simulations and nonlocal elasticity, Computer Methods in Applied Mechanics and Engineering, 267 (2013) 458–470.
[13] E. Jomehzadeh, A.R. Saidi, N.M. Pugno, Large amplitude vibration of a bilayer grapheme embedded in a nonlinear polymer matrix, Physica E, 44(2012)1973-1982.
[14] D. Golberg, Y. Bando, Y. Huang, T. Terao, M. Mitome, C. Tang, C. Zhi, Boron nitride nanotubes and nanosheets, ACSNano,4(2010)2979-2993.
[15] L. Boldrin, F. Scarpa, R. Chwdhury, S. Adhikari, Effective mechanical properties of hexagonal boron nitride nanosheets, Nanotechnology, 22(2011) 505702.
[16] Q. Peng, W. Ji, S. De, Mechanical properties of the hexagonal boron nitride monolayer: Ab initio study, Computational Materials Science,56(2012)11-17.
[17] K.N. Kudin, G.E. Scuseria, B.I. Yakobson, F2C,BN and C nanoshell elasticity from ab initio computations, Physical Review B, 64(2001)235406.
[18] J.F. Green, T.K. Bolland, J.W. Bolland, Theoretical elastic behavior for hexagonal boron nitride, Journal of Chemical Physics, 64(1976) 656-662.
[19] B. Akdim, R. Pachter, X. Duan, W. Adams, Comparative theoretical study of single-wall carbon and boron-nitride nanotubes, Physical Review, 67(2003) 245404.
[20] J. Yuan, K.M. Liew, Internal friction characteristic and analysis of inplane natural frequency of trilayer complexes formed from graphenes and boron nitride nanosheets, RSC Advances., 4(2014)45425–45432.
[21] D. Baowan, J.M. Hill, Nested boron nitride and carbon-boron nitride nanocones, Micro and Nano Letters,2, (2007)46-49.
[22] S. Zhao, J. Xue, Mechanical properties of hybrid graphene and hexagonal boron nitride sheets as revealed by molecular dynamic simulations, Journal of Physics D: A Aplied Physics,46(2013)135303.
[23] S. Park, C. Park, G. Kim, Interlayer coupling enhancement in graphene/hexagonal boron nitride heterostructures by intercalated defects or vacancies, The Journal of Chemical Physics, 140(2014) 134706.
[24] W. Pan, J. Xiao, J. Zhu, Y.C. Yu, G. Zhang, Z. Ni, K. Watanabe, T. Taniguchi, Y. Shi, X. Wang, Biaxial Compressive Strain Engineering in graphene/Boron nitride Heterostructures, Scientific Reports,2(893) (2012) doi: 10.1038/srep00893.
[25] Y. Xiaohu, H. Qiang, Investigation of axially compressed buckling of a multi-walled carbon nanotube under temperature field, Composites Science and Technology, 67(2007)125-134.
[26] Y. Xiaohu, H. Qiang, A continuum mechanics nonlinear postbuckling analysis for single-walled carbon nanotubes under torque, European Journal of Mechanics A/Solids, 27 (2008) 796-807.
[27] J. Lei, Y. He, B. Zhang, Z. Gan, P. Zeng, Bending and vibration of functionally graded sinusoidal microbeams based on the strain gradient elasticity theory. International Journal of Engineering Science, 72(2013)36-52.
[28] H. Askes, E.C. Aifantis, Gradient elasticity in statics and dynamics: An overview of formulations, length scale identification procedures, finite element implementations and new results, International Journal of Solids and Structures, 48(2011)1962-1990.
[29] R.D. Mindlin, Micro-structure in linear elasticity. Archive for Rational Mechanics and Analysis.16(1964)52–78.
[30] R.D. Mindlin, N.N. Eshel, On first strain-gradient theories in linear elasticity, International Journal of Solids and Structures,4(1968)109 -124.
[31] B. Altan, E.C. Aifantis, On some aspects in the special theory of gradient elasticity, Journal of the Mechanical Behavior of Matherials, 8(1997)231–282.
[32] D.C.C. Lam, F. Yang, A.C.M. Chong, J. Wang, P. Tong,“Experiments and theory in strain gradient elasticity, Journal of the Mechanics and Physics of Solids,51(2003)1477 – 1508.
[33] R.D. Mindlin, H.F. Tiersten, Effects of couple-stresses in linear elasticity, Archive for Rational Mechanics and Analysis,11(1962)415-448.
[34] F. Yang, A.C. Chong, D.C.C. Lam, P. Tong, Couple stress based strain gradient theory for elasticity, International Journal of Solids and Structures, 39(2002)2731-2743.
[35] A. Ashoori Movassagh, A.M.J. Mahmoodi. A micro-scale modeling of Kirchhoff plate based on modified strain-gradient elasticity theory, European Journal of Mechanics A-Solids, 40(2013)50-59.
[36] S. Ziaee, M. Asadipour, The effect of small scale on torsional buckling of the embedded double-to five-walled nanotubes under axial loading and thermal field, Amirkabir Journal of Science & Research (Mechanical Engineering), 46(2014)25-27.
[37] Y.Q. Zhang, G.R. Liu, X.Y. Xie, Free transverse vibrations of double-walled carbon nanotubes using a theory of nonlocal elasticity, Physical Review B, 9(2005)195404.
[38] Y.-G. Hu, K.M. Liew, Q. Wang, X.Q. He, B.I. Yakobson, Nonlocal shell model for elastic wave propagation in single- and doublewalled carbon nanotubes, Journal of the Mechanics and Physics of Solids, 56 (2008) 3475–3485.
[39] F. Khademolhosseini, R.K.N.D. Rajapakse, A. Nojeh , Torsional buckling of carbon nanotubes based on nonlocal elasticity shell models, Computational Materials Science,48(2010)736–742.
[40] R. Ansari, S. Sahmani, H. Rouhi, Rayleigh-Ritz axial buckling analysis of single-walled carbon nanotubes with different boundary conditions, Physics Letters A, 375(2011)1255–1263.
[41] W.H. Duan, C.M. Wang, Y.Y. Zhang, Calibration of nonlocal scaling effect parameter for free vibration of carbon nanotubes by molecular dynamics, Journal of Applied Physics,101(2007)024305.
[42] R. Ansari, S. Sahmani, B Arash, , Nonlocal plate model for free vibrations of single-layered graphene sheets, Physics Letters A, 375(2010) 53–62.
[43] L. Shen, H-S Shen, C-L Zhang, A nonlocal plate model for nonlinear vibration of single layer graphene sheets in thermal environments, Computational Material Science, 48(2010)680–685.
[44] R. Ansari, S. Sahmani, Prediction of biaxial buckling of single-layered graphene sheets based on nonlocal plate models and molecular dynamics simulations, Applied Mathematical Modelling, 37(2013)7338-7351
[45] E.M. Miandoab, H.N. Pishkenari, A. Yousefi-Koma, H. Hoorzad, , Polysiliconnano-beam model based on modified couple stress and Eringen’s nonlocal elasticity theories, Physica E, 63(2014)223–228.
[46] J.N. Reddy, Microstructure-dependent couple stress theories of functionally graded beams, Journal of the Mechanics and Physics of Solids, 59(2011)2382-2399.
[47] H. Askes, E.C. Aifantis, Gradient elasticity and flexural wave dispersion in carbon nanotubes, Physical Review B, 80 (2009) 195412.
[48] J.N. Reddy, Theory and Analysis of Elastic Plates and Shell, 2th ed, Taylor & Francis Group, 2007.
[49] P. Malekzadeh, M. Shojaee, Free vibration of nanoplates based on a nonlocal two-variable refined plate theory, Composite Structures, 95 (2013) 443-452.
[50] R.P.Shimpi, Refined plate theory and its variants. AIAA Journal 40(2002)137–46.
[51] R.P. Shimpi, H.G. Patel, Free vibrations of plate using two variable refined plate theory, Journal of Sound and Vibration,296 (2006)979–999.
[52] S. Narendar, Buckling analysis of micro-/nano-scale plates based on twovariable refined plate theory incorporating nonlocal scale effects, Composite Structures, 93(2011) 3093–3103.
[53] H.T. Thai, A nonlocal beam theory for bending, buckling, and vibration of nanobeams, International Journal of Engineering Science, 52(2012)56–64.
[54] J. Wang, X. He, S. Kitipornchai, H. Zhang, Geometrical nonlinear free vibration of multi-layered grapheme sheets, Journal of Physics D: Applied Physics, 44(2011) 13401.
[55] Y. Jiang, Y. Huang, H. Jiang, G. Ravichandran, H. Gao, K.C. Hwang, B. Liu, A cohesive law for carbon nanotube/polymer interfaces based on the van der Waals force, Journal of the Mechanics and Physics of Solids, 54 (2006) 2436 – 2452.
[56] W. Thomson, M.D. Dahleh, Theory of vibration with application, 5th ed, Prentice Hall, 1998.
[57] X. Wang, C. Zhi, Q. Weng, Y. Bando, D. Golberg, Boron Nitride Nanosheets: novel Syntheses and Applications in polymeric Composites, Journal of Physics: Conference Series, 471(2013) 012003.
[58] S.C. Pradhan, J.K. Phadikar, Small scale effect on vibration of embedded multilayered grapheme sheets based on nonlocal continuum models, Physics Letters A, 373(2009,)1062-1069.
[59] S.K. Singh, M. Neek-Amal, S. Costamagna, F.M. Peeters, Thermomechanical properties of a single hexagonal boron nitride sheet, Physical Review B, 87(2013)184106, DOI:10.1103/PhysRevB.87.184106.
[60] Z. Liu, L. Ma, G. Shi, W. Zhou, Y. Gong, S. Lei, X. Yang, J. Zhang, J. Yu, K.P. Hackenberg, A. Babakhani, J-C. Idrobo, R. Vajtai, J. Lou, P.M. Ajayan, In-plane heterostructures of grapheme and hexagonal boron nitride with controlled domain sizes, Nature Nanotechnology, 8(2013)119-124.