بررسی عملکرد سیستم تبرید جذبی تک اثره لیتیوم برماید–آب متصل به گرد‌آورنده فتوولتائیک حرارتی

نوع مقاله : مقاله پژوهشی

نویسندگان

گروه مهندسی مکانیک، دانشگاه سیستان و بلوچستان، زاهدان، ایران

چکیده

در پژوهش حاضر به بررسی عملکرد سیستم تبرید جذبی تک اثره لیتیوم برماید-آب متصل به گردآورنده‌های فتوولتائیک حرارتی پرداخته شده است. اجزاء اصلی سیستم شامل ژنراتور گرما، اواپراتور، کندانسور، جذب کننده، مبدل حرارتی، پمپ، شیرهای انبساط و گردآورنده‌های PV/T می‌باشد. معادلات حاکم بر مسئله توسط نوشتن بقای جرم، غلظت و قانون اول ترمودینامیک برای اجزاء سیستم به دست آمده است و به صورت عددی حل شده است. اعتبارسنجی نتایج شبیه سازی با داده‌های تجربی پژوهش‌های گذشته انجام شده است. نتایج نشان می‌دهد که یک تعداد مطلوبی برای گردآورنده‌های PV/T وجود دارد که مقدار آن 50عدد با مساحت سطح کل 5/38مترمربع می‌باشد و می‌تواند یک بار سرمایشی در حدود 5کیلووات را تأمین نماید. در انتها تأثیر پارامترهای مختلف عملکردی بر ضریب عملکرد روزانه سیکل تبرید خورشیدی بررسی شده است. افزایش دمای ژنراتور گرما، دمای کندانسور و دمای جذب کننده باعث کاهش ضریب عملکرد روزانه سیستم تبرید خورشیدی می‌شود. در حالی که افزایش دمای اواپراتور افزایش ضریب عملکرد روزانه سیستم تبرید خورشیدی را به دنبال دارد. استفاده از گردآورندههای PV/Tعلاوه بر تأمین حرارت ورودی مورد نیاز در ژنراتور گرما می‌تواند توان مصرفی پمپاژ در سیکل ترکیبی و توان الکتریکی اضافه جهت سایر مصارف در اختیار گذارد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Performance Investigation of a Single Effect (LiBr-H2O) Absorption Cooling System connected to Photovoltaic Thermal Collectors

نویسندگان [English]

  • O. Shahryari Zanganeh
  • F. Sarhaddi
Department of Mechanical Engineering, University of Sistan and Baluchestan, Zahedan, Iran
چکیده [English]

In present research, the performance evaluation of a single effect (LiBr-H2O) absorption cooling system connected to photovoltaic thermal collectors is carried out. The main components of the system include generator, evaporator, condenser, absorber, heat exchanger, pump, expansion valves and photovoltaic thermal collectors. The governing equations of the problem are obtained by writing the mass balance, concentration balance and the first law of thermodynamics for the components of the system and it is solved numerically. The validation of simulation results has been carried out with the experimental data of the previous studies. The results show that there is a desired number for photovoltaic thermal collectors which is 50 number with total area 38.5 m2. It can supply a 5 kW cooling load. Finally, the effect of various operating parameters on the daily coefficient of performance of the system has been investigated. The increase of temperature of generator, condenser and absorber increases the daily coefficient of performance of the system, while the increase of evaporator temperature decreases the daily coefficient of performance of the system. The usage of PV/T collectors besides the supply of inlet heat of generator can provide the consumed pumping power through the system and additional electrical power for other applications.

کلیدواژه‌ها [English]

  • Solar absorption cooling system
  • Single effect (LiBr-H2O) cycle
  • Energy analysis
  • Photovoltaic thermal collector
  • Coefficient of performance
[1] H. Sharifi Bidgoli, Refrigeration and Design of Refrigeration Systems and Cold Storage, 1st edition, Jihad Publishing Institution, 2001. (In Persian)
[2] H.M. Henning, Solar-assisted Air Conditioning in Buildings: A Handbook for Planners, 2nd edition, Springer Vienna Architecture 2007.
[3] D.A. Kouremenos, K.A. Antonopoulos, E. Rogdakis, Performance of a solar driven compound NH3/H2O & LIBR/H2O absorption refrigeration system in Athens, Solar & Wind Technology, 7 (1990) 685-697.
[4] G.A. Florides, S.A. Kalogirou, S.A. Tassou, L.C. Wrobel, Modelling, simulation and warming impact assessment of a domestic-size absorption solar cooling system, Applied Thermal Engineering, 22 (2002) 1313-1325.
[5] F. Assilzadeh, S.A. Kalogirou, Y. Ali, K. Sopian, Simulation and optimization of a LiBr solar absorption cooling system with evacuated tube collectors, Renewable Energy, 30 (2005) 1143-1159.
[6] M. Kilic, O. Kaynakli, Second law-based thermodynamic analysis of water-lithium bromide absorption refrigeration system, Energy, 32 (2007) 1505-1512.
[7] T. Mateus, A. Oliveira, Energy and economic analysis of an integrated solar absorption cooling and heating system in different building types and climates, Applied Energy, 86 (2009) 949-957.
[8] S.C. Kaushik, A. Arora, Energy and exergy analysis of single effect and series flowdouble effect water–lithium bromide absorption refrigeration systems, International Journal of Refrigeration, 32 (2009) 1247-1258.
[9] G. Evola, N. Le Pierres, F. Boudehenn, P. Papillon, Proposal and validation of a model for the dynamic simulation of a solar-assisted single-stage LiBr/water absorption chiller, International Journal of Refrigeration, 36 (2013) 1015-1028.
[10] A. Saberi Mehr, A. Sorouraddin, S.M. Seyed Mahmoudi, Energy and exergy analysis of a combined GAX-ejector absorption refrigeration cycle, specific ejector geometry, Modares Mechanical Engineering, 13(11) (2014) 122-138. (In Persian)
[11] M.L. Chougui, S. Zid, Energy analysis of single effect absorption chiller (LiBr/H2O) in an industrial manufacturing of detergent, Energy Procedia, 50 (2014) 105-112.
[12] O. Kaynakli, K. Saka, F. Kaynakli, Energy and exergy analysis of a double effect absorption refrigeration system based on different heat sources, Energy Conversion and Management, 106 (2015) 21-30.
[13] O. Ketfi, M. Merzouk, N.K. Merzouk, S.E. Metenan, Performance of a Single Effect Solar Absorption Cooling System (Libr-H2O), Energy Procedia, 74 (2015) 130-138.
[14] R. Tapeh Kaboudy, E. Suori, S.A. Seyed Shams Taleghani, Investigation of thermodynamic analysis and exergy of a single effect solar absorption refrigeration cycle with parabolic collectors and the agent fluid of water and ammonia, 1st International Conference on Mechanical Engineering and Aerospace, University of Tehran, Tehran, Iran 2016. (In Persian)
[15] A. Shirazi, R.A. Taylor, S.D. White, G.L. Morrison, A systematic parametric study and feasibility assessment of solar-assisted single-effect, double-effect, and triple-effect absorption chillers for heating and cooling applications, Energy Conversion and Management, 114 (2016) 258-277.
[16] R.E. Sonntag, G.J. Van Wylen, C. Borgnakke, Fundamentals of Thermodynamics, 7th Edition, John Wiley & Sons, Inc. 2009.
[17] F.L. Lansing, Computer modeling of a single–stage lithium bromide/water absorption refrigeration unit, JPL Deep Space Network Progress Report 42-32, NASA, 42 (32) (1978) 247-257.
[18] A. Tiwari, M.S. Sodha, Performance evaluation of solar PV/T system: An experimental validation, Solar Energy, 80 (2006) 751-759.
[19] J. Yazdanpanahi, F. Sarhaddi, M. Mahdavi Adeli, Experimental investigation of exergy efficiency of a solar photovoltaic thermal (PVT) water collector based on exergy losses, Solar Energy, 118 (2015) 197-208.
[20] S. Dubey, G.N. Tiwari, Analysis of different configurations of flat plate water collectors connected in series, International Journal of Energy Research, 32 (2008) 1362-1372.
[21] J.C. Martinez, P.J. Martinez, L.A. Bujedo, Development and experimental validation of a simulation model to reproduce the performance of a 17.6 kW LiBr-water absorption chiller, Renewable Energy, 86 (2016) 473-482.
[22] L. Garousi Farshi, S.M. Seyed Mahmoudi, M.A. Rosen, Analysis of crystallization risk in double effect absorption refrigeration systems, Applied Thermal Engineering, 31 (2011) 1712-1717.