[1] V. Birman, L.W. Byrd, Modeling and analysis of functionally graded materials and structures, Applied mechanics reviews, 60(5) (2007) 195-216.
[2] N. Zhao, P.Y. Qiu, L.L. Cao, Development and application of functionally graded material, in: Advanced Materials Research, Trans Tech Publ, 2012, pp. 371-375.
[3] M. Shariyat, D. Asgari, M. AZADI, Nonlinear Transient Thermoelastic Analysis of a Thick FGM Cylinder with Temperature-Dependent Material Properties Using the Finite Element Method, (2010).
[4] A. Nosier, A. Ghaheri, Nonlinear forced vibrations of thin circular functionally graded plates, (2015).
[5] F. Ebrahimi, Effect of functionally graded microstructure on dynamic stability of piezoelectric circular plates, (2015).
[6] A. Moosaie, K.H. PANAHI, Exact solution of steady nonlinear heat conduction in exponentially graded cylindrical and spherical shells with temperature-dependent properties, (2016).
[7] N. Cheraghi, M. Lazgy Nazargah, An exact bending solution for functionally graded magneto-electro-elastic plates resting on elastic foundations with considering interfacial imperfections, Modares Mechanical Engineering, 15(12) (2016) 346-356.
[8] S. Iijima, Helical microtubules of graphitic carbon, nature, 354(6348) (1991) 56.
[9] Y. Zhang, G. Liu, J. Wang, Small-scale effects on buckling of multiwalled carbon nanotubes under axial compression, Physical review B, 70(20) (2004) 205430.
[10] Q. Wang, Wave propagation in carbon nanotubes via nonlocal continuum mechanics, Journal of Applied physics, 98(12) (2005) 124301.
[11] Q. Wang, V. Varadan, Vibration of carbon nanotubes studied using nonlocal continuum mechanics, Smart Materials and Structures, 15(2) (2006) 659.
[12] A.C. Eringen, Linear theory of nonlocal elasticity and dispersion of plane waves, International Journal of Engineering Science, 10(5) (1972) 425-435.
[13] A.C. Eringen, On differential equations of nonlocal elasticity and solutions of screw dislocation and surface waves, Journal of applied physics, 54(9) (1983) 4703-4710.
[14] F. Yang, A. Chong, D.C.C. Lam, P. Tong, Couple stress based strain gradient theory for elasticity, International Journal of Solids and Structures, 39(10) (2002) 2731-2743.
[15] J. Reddy, Nonlocal theories for bending, buckling and vibration of beams, International Journal of Engineering Science, 45(2-8) (2007) 288-307.
[16] S. Pradhan, J. Phadikar, Nonlocal elasticity theory for vibration of nanoplates, Journal of Sound and Vibration, 325(1-2) (2009) 206-223.
[17] M. Aydogdu, A general nonlocal beam theory: its application to nanobeam bending, buckling and vibration, Physica E: Low-dimensional Systems and Nanostructures, 41(9) (2009) 1651-1655.
[18] T. Murmu, S. Adhikari, Nonlocal transverse vibration of double-nanobeam-systems, Journal of Applied Physics, 108(8) (2010) 083514.
[19] C.W. Lim, C. Li, J.-L. Yu, Dynamic behaviour of axially moving nanobeams based on nonlocal elasticity approach, Acta Mechanica Sinica, 26(5) (2010) 755-765.
[20] L.-L. Ke, Y.-S. Wang, J. Yang, S. Kitipornchai, Free vibration of size-dependent magneto-electro-elastic nanoplates based on the nonlocal theory, Acta Mechanica Sinica, 30(4) (2014) 516-525.
[21] Y.-Z. Wang, F.-M. Li, K. Kishimoto, Scale effects on flexural wave propagation in nanoplate embedded in elastic matrix with initial stress, Applied Physics A, 99(4) (2010) 907-911.
[22] Y.-Z. Wang, F.-M. Li, K. Kishimoto, Scale effects on the longitudinal wave propagation in nanoplates, Physica E: Low-dimensional Systems and Nanostructures, 42(5) (2010) 1356-1360.
[23] S. Narendar, S. Gopalakrishnan, Temperature effects on wave propagation in nanoplates, Composites Part B: Engineering, 43(3) (2012) 1275-1281.
[24] L. Zhang, J. Liu, X. Fang, G. Nie, Effects of surface piezoelectricity and nonlocal scale on wave propagation in piezoelectric nanoplates, European Journal of Mechanics-A/Solids, 46 (2014) 22-29.
[25] L. Zhang, J. Liu, X. Fang, G. Nie, Surface effect on size-dependent wave propagation in nanoplates via nonlocal elasticity, Philosophical Magazine, 94(18) (2014) 2009-2020.
[26] J. Zang, B. Fang, Y.-W. Zhang, T.-Z. Yang, D.-H. Li, Longitudinal wave propagation in a piezoelectricnanoplate considering surface effects and nonlocal elasticity theory, Physica E: Low-dimensional Systems and Nanostructures, 63 (2014) 147-150.
[27] G. Varzandian, S. Ziaei, Analytical Solution of Non-Linear Free Vibration of Thin Rectangular Plates with Various Boundary Conditions Based on Non-Local nanoplate considering surface effects and nonlocal elasticity theory, Physica E: Low-dimensional Systems and Nanostructures, 63 (2014) 147-150.
[27] G. Varzandian, S. Ziaei, Analytical Solution of Non-Linear Free Vibration of Thin Rectangular Plates with Various Boundary Conditions Based on Non-Local Theory, Mechanical Engineering, 48(4) (2017).
[28] A. Kaghazian, H.R. Foruzande, A. Hajnayeb, H. Mohammad Sedighi, nonlinear free vibrations analysis of a piezoelectric bimorph nanoactuator using nonlocal elasticity theory, Modares Mechanical Engineering, 16(4) (2016) 55-66.
[29] R. Nazemnezhad, K. Kamali, Investigation of the inertia of the lateral motions effect on free axial vibration of nanorods using nonlocal Rayleigh theory, Modares Mechanical Engineering, 16(5) (2016) 19-28.
[30] Z. Su, L. Ye, Y. Lu, Guided Lamb waves for identification of damage in composite structures: A review, Journal of sound and vibration, 295(3-5) (2006) 753-780.
[31] R.F. Bunshah, J.M. Blocher, Deposition technologies for films and coatings: developments and applications, Noyes Data, 1982.
[32] P. Patel, D. Almond, Thermal wave testing of plasma-sprayed coatings and a comparison of the effects of coating microstructure on the propagation of thermal and ultrasonic waves, Journal of Materials science, 20(3) (1985) 955-966.
[33] S. Natarajan, S. Chakraborty, M. Thangavel, S. Bordas, T. Rabczuk, Size-dependent free flexural vibration behavior of functionally graded nanoplates, Computational Materials Science, 65 (2012) 74-80.
[34] F. Ebrahimi, E. Salari, Thermal buckling and free vibration analysis of size dependent Timoshenko FG nanobeams in thermal environments, Composite Structures, 128 (2015) 363-380.
[35] F. Ebrahimi, E. Salari, S.A.H. Hosseini, Thermomechanical vibration behavior of FG nanobeams subjected to linear and non-linear temperature distributions, Journal of Thermal Stresses, 38(12) (2015) 1360-1386.
[36] R. Ansari, M. Ashrafi, T. Pourashraf, S. Sahmani, Vibration and buckling characteristics of functionally graded nanoplates subjected to thermal loading based on surface elasticity theory, Acta Astronautica, 109 (2015) 42-51.
[37] I. Belkorissat, M.S.A. Houari, A. Tounsi, E. Bedia, S. Mahmoud, On vibration properties of functionally graded nano-plate using a new nonlocal refined four variable model, Steel Compos. Struct, 18(4) (2015) 1063-1081.
[38] M.R. Nami, M. Janghorban, M. Damadam, Thermal buckling analysis of functionally graded rectangular nanoplates based on nonlocal third-order shear deformation theory, Aerospace Science and Technology, 41 (2015) 7-15.
[39] H.-T. Thai, D.-H. Choi, A refined shear deformation theory for free vibration of functionally graded plates on elastic foundation, Composites Part B: Engineering, 43(5) (2012) 2335-2347.
[40] H.-T. Thai, T. Park, D.-H. Choi, An efficient shear deformation theory for vibration of functionally graded plates, Archive of Applied Mechanics, 83(1) (2013) 137-149.
[41] F. Kaviani, H. Mirdamadi, Static Analysis of Bending, Stability, and Dynamic Analysis of Functionally Graded Plates by a Four-Variable Theory.
[42] S.A. Yahia, H.A. Atmane, M.S.A. Houari, A. Tounsi, Wave propagation in functionally graded plates with porosities using various higher-order shear deformation plate theories, Structural Engineering and Mechanics, 53(6) (2015) 1143-1165.
[43] A. Ghorbanpour Arani, M. Jamali, A. Ghorbanpour-Arani, R. Kolahchi, M. Mosayyebi, Electro-magneto wave propagation analysis of viscoelastic sandwich nanoplates considering surface effects, Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 231(2) (2017) 387-403.
[44] M.R. Barati, A.M. Zenkour, H. Shahverdi, Thermo-mechanical buckling analysis of embedded nanosize FG plates in thermal environments via an inverse cotangential theory, Composite Structures, 141 (2016) 203-212.
[45] Y.-W. Zhang, J. Chen, W. Zeng, Y.-Y. Teng, B. Fang, J. Zang, Surface and thermal effects of the flexural wave propagation of piezoelectric functionally graded nanobeam using nonlocal elasticity, Computational Materials Science, 97 (2015) 222-226.
[46] L. Li, Y. Hu, L. Ling, Flexural wave propagation in small-scaled functionally graded beams via a nonlocal strain gradient theory, Composite Structures, 133 (2015) 1079-1092.