[1] D.B. Tuckerman, R. Pease, High-performance heat sinking for VLSI, IEEE Electron device letters, 2(5) (1981) 126-129.
[2] G. Hetsroni, A. Mosyak, Z. Segal, Nonuniform temperature distribution in electronic devices cooled by flow in parallel microchannels, IEEE Transactions on Components and Packaging Technologies, 24(1) (2001) 16-23.
[3] I. Tiselj, G. Hetsroni, B. Mavko, A. Mosyak, E. Pogrebnyak, Z. Segal, Effect of axial conduction on the heat transfer in micro-channels, International Journal of Heat and Mass Transfer, 47(12) (2004) 2551-2565.
[4] R. Chein, J. Chen, Numerical study of the inlet/ outlet arrangement effect on microchannel heat sink performance, International Journal of Thermal Sciences, 48(8) (2009) 1627-1638.
[5] T.-C. Hung, W.-M. Yan, Effects of tapered-channel design on thermal performance of microchannel heat sink, International Communications in Heat and Mass Transfer, 39(9) (2012) 1342-1347.
[6] V.L. Vinodhan, K. Rajan, Computational analysis of new microchannel heat sink configurations, Energy Conversion and Management, 86 (2014) 595-604.
[7] V. Duryodhan, A. Singh, S. Singh, A. Agrawal, Convective heat transfer in diverging and converging microchannels, International Journal of Heat and Mass Transfer, 80 (2015) 424-438.
[8] H. Khorasanizadeh, M. Sepehrnia, Effects of different inlet/outlet arrangements on performance of a trapezoidal porous microchannel heat sink, Modares Mechanical Engineering, 16(8) (2016) 269-280. (in Persian).
[9] R. Chein, G. Huang, Analysis of microchannel heat sink performance using nanofluids, Applied thermal engineering, 25(17-18) (2005) 3104-3114.
[10] H.R. Seyf, B. Nikaaein, Analysis of Brownian motion and particle size effects on the thermal behavior and cooling performance of microchannel heat sinks, International Journal of Thermal Sciences, 58 (2012) 36- 44.
[11] B. Fani, M. Kalteh, A. Abbassi, Investigating the effect of Brownian motion and viscous dissipation on the nanofluid heat transfer in a trapezoidal microchannel heat sink, Advanced Powder Technology, 26(1) (2015) 83-90.
[12] H. Khorasanizadeh, M. Sepehrnia, R. Sadeghi, Three dimensional investigations of inlet/outlet arrangements and nanofluid utilization effects on a triangular microchannel heat sink performance, Modares Mechanical Engineering, 16(12) (2016) 27-38 (in Persian).
[13] S.E. Ghasemi, A. Ranjbar, M. Hosseini, Thermal and hydrodynamic characteristics of water-based suspensions of Al2O3 nanoparticles in a novel minichannel heat sink, Journal of Molecular Liquids, 230 (2017) 550-556.
[14] G. Hetsroni, A. Mosyak, Z. Segal, Nonuniform temperature distribution in electronic devices cooled by flow in parallel microchannels, Components and Packaging Technologies, IEEE Transactions on, 24(1) (2001) 16-23.
[15] Y. Xuan, W. Roetzel, Conceptions for heat transfer correlation of nanofluids, International Journal of heat and Mass transfer, 43(19) (2000) 3701-3707.
[16] K. Khanafer, K. Vafai, A critical synthesis of thermophysical characteristics of nanofluids, International journal of heat and mass transfer, 54(19-20) (2011) 4410-4428.
[17] J. Li, Computational Analysis of Nanofluid Flow in Microchannels with Applications to Micro-heat Sinks and Bio-MEMS, ProQuest, 2008.
[18] Y. Yang, Z.G. Zhang, E.A. Grulke, W.B. Anderson, G. Wu, Heat transfer properties of nanoparticle-in-fluid dispersions (nanofluids) in laminar flow, International Journal of Heat and Mass Transfer, 48(6) (2005) 1107- 1116.
[19] J. Koo, C. Kleinstreuer, A new thermal conductivity model for nanofluids, Journal of Nanoparticle Research, 6(6) (2004) 577-588.
[20] C. Glassbrenner, G.A. Slack, Thermal conductivity of silicon and germanium from 3 K to the melting point, Physical Review, 134(4A) (1964) A1058.
[21] Y. Hwang, J. Lee, C. Lee, Y. Jung, S. Cheong, C. Lee, B. Ku, S. Jang, Stability and thermal conductivity characteristics of nanofluids, Thermochimica Acta, 455(1) (2007) 70-74.
[22] R.J. Phillips, Microchannel Heat Sinks, Lincoln Laboratory Journal, 1(1) (1988).