[1] D. Brehl, T. Dow, Review of vibration-assisted machining, Precision engineering, 32(3) (2008) 153-172.
[2] F. Klocke, O. Dambon, B. Bulla, Ultrasonic assisted diamond turning of hardened steel with mono-crystalline diamond, Proceedings of the 10th International Euspen Conference, Zürich, Switzerland (2008).
[3] K. J. Trigger, B. T. Chao, An analytical evaluation of metal-cutting temperatures, ASME (1950).
[4] E. Usui, T. Shirakashi, T. Kitagawa, Analytical prediction of three dimensional cutting process—Part 3: Cutting temperature and crater wear of carbide tool, Journal of Engineering for industry, 100 (2) (1978) 236-243.
[5] J. Tlusty, E. Orady, Effect of thermal cycling on tool wear in milling, 9th NAMRC Conference, Penn. State University (1981).
[6] J.S. Strenkowski, K.J. Moon, Finite element prediction of chip geometry and tool work-piece temperature distributions in orthogonal metal cutting, Journal of Engineering for Industry, 112 (1990) 313–318.
[7] D.A. Stephenson, A. Ali, Tool temperatures in interrupted metal cutting. Journal of Engineering for Industry, 114 (1992).
[8] I. Lazoglu, Y. Altintas, Prediction of tool and chip temperature in continuous and interrupted machining, International Journal of Machine Tools and Manufacture, 42 (9) (2002) 1011-1022.
[9] X.D. Liu, Direct single point diamond cutting of stavax assisted with ultrasonic vibration to produce optical quality surface finish, ASPE proceedings (2003).
[10] T. Moriwaki, E. Shamoto, Ultrasonic elliptical vibration cutting, CIRP Annals-Manufacturing Technology, 44 (1) (1995) 31-34.
[11] A.V. Mitrofanov, V.I. Babitsky, V.V. Silberschmidt, Finite element simulations of ultrasonically assisted turning, Computational Materials Science, 28 (3) (2003) 645-653.
[12] A.V. Mitrofanov, V.I. Babitsky, V.V. Silberschmidt, Finite element analysis of ultrasonically assisted turning of Inconel 718, Journal of materials processing technology, 153 (2004) 233-239.
[13] N. Ahmed, 3D finite element analysis of ultrasonically assisted turning, Computational Materials Science, 39 (1) (2007) 149-154.
[14] S. Amini, FEM analysis of ultrasonic-vibration-assisted turning and the vibratory tool, Journal of materials processing technology, 201 (1) (2008) 43-47.
[15] J. Overcash, J.F. Cuttino, In-process modeling of dynamic tool-tip temperatures of a tunable vibration turning device operating at ultrasonic frequencies, Precision Engineering, 33(4) (2009) 505-515.
[16] R. Muhammad, Numerical modelling of vibration-assisted turning of Ti-15333, Procedia CIRP 1 (2012) 347-352.
[17] S. Patil, Modelling and simulation of effect of ultrasonic vibrations on machining of Ti6Al4V, Ultrasonics 54 (2) (2014) 694-705.
[18] F. H. Cakir, Finite element modeling of ultrasonic assisted turning of Ti6Al4V alloy, Procedia-Social and Behavioral Sciences 195 (2015) 2839-2848.
[19] M. Lotfi, S. Amini, Effect of ultrasonic vibration on frictional behavior of tool–chip interface: Finite element analysis and experimental study, Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture 232(7) (2016) 1212-1220.
[20] C. Milton, M. Shaw, Metal cutting principles. CIAIRENDON PRIESS· OXROIRD, (1984) 224-250.
[21] E.M. Trent, P.K. Wright, Metal cutting, Butterworth-Heinemann (2000).
[22] M. Sayuti, A.A. Sarhan, F. Salem, Novel uses of SiO2 nano-lubrication system in hard turning process of hardened steel AISI4140 for less tool wear, surface roughness and oil consumption, Journal of Cleaner Production 67 (2014) 265-276.
[23] F.J. Zerilli, R.W. Armstrong, Dislocation‐mechanics‐based constitutive relations for material dynamics calculations, Journal of Applied Physics 61 (5) (1987): 1816-1825.