[1] T. Sinmazçelik, M. O.Bora, A Review: Fiber Metal Laminates, Background, Bonding Types and Applied Test Methods, Materials and Design, 32 (2011) 3671-3685.
[2] E.C. Botelhoa, R.A. Silvac, L.C. Pardinia, A Review on the Development and Properties of Continuous Fiber/Epoxy/Aluminum Hybrid Composites for Aircraft Structures, Materials Research, 9(3) (2006) 247-256.
[3] F.D. Morinière, R.C. Alderliesten, R. Benedictus, Modelling of Impact Damage and Dynamics in Fibre-Metal Laminates – Review, International Journal of Impact Engineering, 67 (2014) 27-38.
[4] H. Sabouri, H. Ahmadi, G.H. Liaghat, Ballistic Impact Perforation into GLARE Targets: Experiment, Numerical Modelling and Investigation of Aluminium Stacking Sequence, International Journal of Vehicle Structures & Systems, 3(3) (2011) 178-183.
[5] M. Sadighi, R.C. Alderliesten, R. Benedictus, Impact Resistance of Fiber-Metal Laminates: A Review, International Journal of Impact Engineering, 40 (2012) 77-90.
[6] H. Ahmadi, G.H. Liaghat, H. Sabouri, E. Bidkhouri, Investigation on the High Velocity Impact Properties of Glass-Reinforced Fiber Metal Laminates, Journal of Composite Material, 47(13) (2012) 1605-1615.
[7] F.D. Morinière, R.C. Alderliesten, M. Sadighi, R. Benedictus, An Integrated Study on the Low-Velocity Impact Response of the GLARE Fibre-Metal Laminate, Composite Structures, 100 (2013) 89-103.
[8] M. Ghalami, M. Sadighi, Investigation of High Velocity Impact of Cylindrical Projectile on Sandwich Panels with Fiber–Metal Laminates Skins and Polyurethane Core, Aerospace Science and Technology, 32 (2014) 142-152.
[9] E. Sitnikova, Z.W. Guan, G.K. Schleyer, W.J. Cantwell, Modelling of Perforation Failure in Fibre Metal Laminates Subjected to High Impulsive Blast Loading, International Journal of Solids and Structures, 51 (2014) 3135–3146.
[10] A. Masoudi, G.H. Liaghat, M. Pol, Effects of Nanoclay on the Ballistic Behavior of GLARE - Experimental and Numerical Investigation, Modares Journal of Mechanical Engineering, 14(7) (2014) 43-51. (In Persian)
[11] G. Boay Chai, P. Manikandan, Low Velocity Impact Response of Fibre-Metal Laminates – A Review, Composite Structures, 107 (2014) 363–381.
[12] L. Jayaprakash, K. Ranjithkumar, S.L. Pradeep Kumar, Influence of Metal (Aluminium) Layer Thickness in Glare, International Journal of Innovative Research in Science, Engineering and Technology, 4 (2015) 321-323.
[13] C. Qi, G. Zhidong, L. Zengshan, J. Zhaojie, Z. Yue, Experimental Investigation on Impact Performances of GLARE Laminates, Chinese Journal of Aeronautics, 5 (2015) 212-221.
[14] J. Zhou, Z.Q. Guan, W.J. Cantwell, Strain-Rate on the Perforation Resistance of Fiber Metal Laminates, Composite Structures, 125 (2015) 247–255.
[15] A.K. Syed, M.E. Fitzpatrick, J.E. Moffatt, J. Doucet, I. Durazo-Cardenas, Effect of Impact Damage on Fatigue Performance of Structures Reinforced with GLARE Bonded Crack Retarders, International Journal of Fatigue, 80 (2015) 231–237.
[16] A. Niknejad, A. Zareei, Ballistic Limit Velocity of Empty Rectangular Metal Columns under A Blunt Projectile Penetration, Journal of Defense Modeling and Simulation: Applications, Methodology, Technology, 13(1) (2015) 119–131.
[17] Technical Manual, Army Ammunition Data Sheets, Headquarters, Department of the Army Washington, D.C. (1994).
[18] Y. Huang, Y., J. Liu, X. Huang, J. Zhang, G. Yue, Delamination and Fatigue Crack Growth Behavior in Fiber Metal Laminates (Glare) under Single Overloads, International Journal of Fatigue, 78 (2015) 53–60.
[19] E.J. Barbero, Finite Element Analysis of Composite Materials Using Abaqus. CRC Press. (2013).
[20] S.R. Reid, H.M. Wen, Impact Behavior of Fiber-Reinforced Composite Materials and Structures. Cambridge: Wood-Head Publishing. (2000).