[1] S. Hosseini-Hashemi, M. Zare, R. Nazemnezhad, An exact analytical approach for free vibration of Mindlin rectangular nano-plates via nonlocal elasticity, Compo. Struct., 100 (2013) 290-299.
[2] R. Nazemnezhad, M. Salimi, S.H. Hashemi, P.A. Sharabiani, An analytical study on the nonlinear free vibration of nanoscale beams incorporating surface density effects, Composites Part B, 43(8) (2012) 2893-2897.
[3] C. Li, C.W. Lim, J. Yu, Twisting statics and dynamics for circular elastic nanosolids by nonlocal elasticity theory, Acta Mech. Solida Sin., 24(6) (2011) 484-494.
[4] C.W. Lim, C. Li, J. Yu, Free torsional vibration of nanotubes based on nonlocal stress theory, J. Sound Vib., 331(12) (2012) 2798-2808.
[5] M. Aydogdu, M. Arda, Torsional vibration analysis of double walled carbon nanotubes using nonlocal elasticity, Int. J. Mech. Mater. Des., (2014) 1-14.
[6] J. Loya, J. Aranda-Ruiz, J. Fernández-Sáez, Torsion of cracked nanorods using a nonlocal elasticity model, J. Phys. D: Appl. Phys., 47(11) (2014) 115304.
[7] C. Lim, M. Islam, G. Zhang, A nonlocal finite element method for torsional statics and dynamics of circular nanostructures, Int. J. Mech. Sci., 94 (2015) 232-243.
[8] M. Arda, M. Aydogdu, Torsional statics and dynamics of nanotubes embedded in an elastic medium, Compo. Struct., 114 (2014) 80-91.
[9] Y.T. Beni, M. Abadyan, Size-dependent pull-in instability of torsional nano-actuator, Phys. Scripta, 88(5) (2013) 055801.
[10] R. Ansari, R. Gholami, S. Ajori, Torsional vibration analysis of carbon nanotubes based on the strain gradient theory and molecular dynamic simulations, J. Vib. Acoust., 135(5) (2013) 051016.
[11] F. Khademolhosseini, A.S. Phani, A. Nojeh, N. Rajapakse, Nonlocal continuum modeling and molecular dynamics simulation of torsional vibration of carbon nanotubes, IEEE T. Nanotechnol., 11(1) (2012) 34-43.
[12] B. Gheshlaghi, S.M. Hasheminejad, Size dependent torsional vibration of nanotubes, Physica E, 43(1) (2010) 45-48.
[13] Z. Islam, P. Jia, C. Lim, Torsional wave propagation and vibration of circular nanostructures based on nonlocal elasticity theory, I. J. Appl. Mech., 6(02) (2014) 1450011.
[14] S.S. Rao, Vibration of continuous systems, John Wiley & Sons, 2007.
[15] R.E. Miller, V.B. Shenoy, Size-dependent elastic properties of nanosized structural elements, Nanotechnology, 11(3) (2000) 139.
[16] C. Liu, R. Rajapakse, Continuum models incorporating surface energy for static and dynamic response of nanoscale beams, IEEE T. Nanotechnol., 9(4) (2010) 422-431.
[17] S. Hosseini-Hashemi, R. Nazemnezhad, An analytical study on the nonlinear free vibration of functionally graded nanobeams incorporating surface effects, Composites Part B, 52 (2013) 199-206.
[18] S. Hosseini-Hashemi, I. Nahas, M. Fakher, R. Nazemnezhad, Surface effects on free vibration of piezoelectric functionally graded nanobeams using nonlocal elasticity, Acta Mech., 225(6) (2014) 1555-1564.