[1] G. R. Irwin, J. A. Kies, Critical energy rate analysis of fracture strength, Journal of Welding, 33(1)(1954) 193-198.
[2] G. R. Irwin, Analysis of stresses and strains near the end of a crack traversing a plate, Journal of Applied Mechanics, 24(1) (1957) 361-364.
[3] B. Biondi, S. Caddemi, Closed form solutions of Euler–Bernoulli beams with singularities, Journal of Solids Structure, 42 (2005) 3027–3044.
[4] S. Caddemi, I. Calio, Exact closed-form solution for the vibration modes of the Euler–Bernoulli beam with multiple open cracks, Journal of Sound and Vibration, 327(2009) 473-489.
[5] P. Ricci, E. Viola, Stress intensity factors for cracked T-section and dynamic behaviour of T-beams, Engineering Fracture Mechanics, 73 (2006) 91-111.
[6] T. Yokoyama, M.C. Chen, Vibration analysis of edge- cracked beams using a line-spring model, Engineering Fracture Mechanics, 59(3) (1998) 403-409.
[7] A.D. Dimarogonas, Vibration of cracked structures: A state of the art review, Engineering Fracture Mechanics, 55(5) (1996) 831-857.
[8] M. H. Walid, Crack detection from the variation of the eigenfrequencies of a beam on elastic foundation, Engineering Fracture Mechanics, 52(3) (1995) 409-421.
[9] M. Hsu, Vibration analysis of edge-cracked beam on elastic foundation with axial loading using the differential quadrature method, Comput. Methods Appl. Mech. Engrg., 194(1) (2005) 1–17.
[10] M. Nassar, S. Matbuly, M. Ragb, Vibration analysis of structural elements using differential quadrature method, Journal of Advanced Research, 4(1) (2013) 93–102.
[11] Y. Shin, J. Yun, K. Seong, J. Kim, S. Kang, Natural frequencies of Euler-Bernoulli beam with open cracks on elastic foundations, Journal of Mechanical Science and Technology, 20(4) (2006) 467-472.
[12] T. Yan, S. Kitipornchai, J. Yang, X. Q. He, Dynamic behaviour of edge-cracked shear deformable functionally graded beams on an elastic foundation under a moving load, Composite Structures, 93(11)(2011) 2992–3001.
[13] A. Mirzabeigy, F. Bakhtiari-Nejad, Semi-analytical approach for free vibration analysis of cracked beams resting on two-parameter elastic foundation with elastically restrained ends, Front. Mech. Eng., 9( 2)(2014) 191–202.
[14] M. Attar, A. Karrech, K. Regenauer-Lieb, Free vibration analysis of a cracked shear deformable beam on a two-parameter elastic foundation using a lattice spring model, Journal of Sound and Vibration, 333(11) (2014) 2359–2377.
[15] M. Ghasemi, A. Ariaei, Crack detection in Euler- Bernoulli beams on elastic foundation using genetic algorithm based on discrete element technique, Indian j.sci.res., 1( 2) (2014) 248-253.
[16] S. D. Akbas, Free Vibration Analysis Of Edge Cracked Functionally Graded Beams Resting On Winkler-Pasternak Foundation, International Journal of Engineering & Applied Sciences, 7(3) (2015) 1-15.
[17] A. C. Batihan, F. S. Kadioglu, Vibration Analysis of a Cracked Beam on anElastic Foundation, International Journal of Structural Stability and Dynamics, 16( 5)(2016) 1-18.
[18] A. Khnaijar, R. Benamar, A discrete model for nonlinear vibrations of a simply supported cracked beams resting on elastic foundations, Diagnostyka, 18( 3) (2017) 39-46.
[19] Y. Kumar, The Rayleigh–Ritz method for linear dynamic, static and buckling behavior of beams, shells and plates: A literature review, Journal of Vibration and Control, 24(1) (2017) 1205-1227.
[21] K. V. Terzaghi, Evaluation of coefficient of subgrade reaction, Geotechnique, 5(4) (1995) 297-326.
[22] A. W. Leissa, M. S. Qatu, Vibrations of Continuous Systems, First edition, McGraw-Hill United States of America, 2011.
[23] ABAQUS, version 6.12-3, Simulia Abaqus, Dassault Systemes Simulia Corp, Build ID: 2012-10-04- 20.52.12-120045, United States of America, 2012.