[1] J. Sadeghi, B. Akbari, Field investigation on effects of railway track geometric parameters on rail wear. Journal of Zhejiang University-SCIENCE A, 7(11), (2006) 1846-1855.
[2] M. Pletz, W. Daves, W. Yao, H. Ossberger, Rolling contact fatigue of three crossing nose materials— Multiscale FE approach, Wear, 314(1-2) (2014) 69-77.
[3] C. Wan, V. Markine, I. Shevtsov, Improvement of vehicle–turnout interaction by optimising the shape of crossing nose, Vehicle System Dynamics, 52(11) (2014) 1517-1540.
[4] M. Wiest, W. Daves, F. Fischer, H. Ossberger, Deformation and damage of a crossing nose due to wheel passages, Wear, 265(9-10) (2008) 1431-1438.
[5] N.K. Mandal, On the low cycle fatigue failure of insulated rail joints (IRJs), Engineering Failure Analysis, 40 (2014) 58-74.
[6] A. Johansson, B. Pålsson, M. Ekh, J.C. Nielsen, M.K. Ander, J. Brouzoulis, E. Kassa, Simulation of wheel– rail contact and damage in switches & crossings, Wear, 271(1-2) (2011) 472-481.
[7] J. Xiao, F. Zhang, L. Qian, Numerical simulation of stress and deformation in a railway crossing, Engineering failure analysis, 18(8) (2011) 2296-2304.
[8] L. Xin, V. Markine, I. Shevtsov, Numerical analysis of rolling contact fatigue crack initiation and fatigue life prediction of the railway crossing, in: CM2015: 10th International Conference on Contact Mechanics, Colorado Springs, USA, 30 August-3 September 2015, 2015.
[9] M.R. Ghazavi, M.Taki, Dynamic simulations of the freight three-piece bogie motion in curve, Vehicle System Dynamics, 46(10) (2008) 955-973.
[10] R. Lewis, U. Olofsson, Wheel-rail interface handbook, Elsevier, 2009.
[11] K. Johnson, The strength of surfaces in rolling contact, Proceedings of the Institution of Mechanical Engineers, Part C: Mechanical Engineering Science, 203(3) (1989) 151-163.
[12] A. Kapoor, A reāevaluation of the life to rupture of ductile metals by cyclic plastic strain, Fatigue & fracture of engineering materials & structures, 17(2) (1994) 201-219.
[13] K. Johnson, A graphical approach to shakedown in rolling contact, in: Applied Stress Analysis, Springer, 1990, pp. 263-274.
[14] J.W. Ringsberg, Cyclic ratchetting and failure of a pearlitic rail steel, Fatigue & Fracture of Engineering Materials & Structures, 23(9) (2000) 747-758.
[15] U. Zerbst, R. Lundén, K.-O. Edel, R.A. Smith, Introduction to the damage tolerance behaviour of railway rails–a review, Engineering fracture mechanics, 76(17) (2009) 2563-2601.
[16] Abaqus Users Manual 2016
[17] J.W. Ringsberg, Life prediction of rolling contact fatigue crack initiation, International Journal of fatigue, 23(7) (2001) 575-586.
[18] Y. Jiang, H. Sehitoglu, A model for rolling contact failure, Wear, 224(1) (1999) 38-49.
[19] J. P. Srivastava, P. K. Sarkar, V. R. Meesala, V. Ranjan, Rolling Contact Fatigue Life of Rail for Different Slip Conditions, Latin American Journal of Solids and Structures, 14(12) (2017) 2243-2264.