Deformation analysis of single-wall carbon nanotubes: a shell theory based on the interatomic potential

Document Type : Research Article



The aim of the current study is to present a finite deformation shell theory incorporating interatomic potentials for single-wall carbon nanotubes (CNTs). For this purpose, a linkage between the strain energy density induced in the continuum and the interatomic potential is established by the employment of the modified Cauchy-Born rule. This theory, which considers the nonlinear, multi-body atomistic coupling and the CNT chirality, incorporates the important effects of bending moment and curvature for a curved surface. The theory is applied to extract the constitutive relations, which bypass the use of nanotube thickness and Young’s modulus, among stress, moment, strain, curvature and the interatomic potential. It is found that the chirality affects the mechanical behavior of the nanotube in tension and bending and this effect is less profound for the CNTs with higher radius at vanishing strain and curvature.


[1] A. Krishnan., E. Dujardin., T.W. Ebbesen., P.N. Yianilos., M.M.J. Treacy, “Young’s modulus of single-walled nanotubes”, Phys. Rev. B, vol, 58, pp. 14013– 14019, 1998.
[2] O. Lourie., H.D. Wagner, “Evaluation of Young’s modulus of carbon nanotubes by micro-Raman spectroscopy”, J. Mater. Res, vol, 13, pp. 2418– 2422, 1998.
[3] B.I. Yakobson., P. Avouris, “Mechanical properties of carbon nanotubes”, In: Dresselhaus, M.S., Dresselhaus, G., Avouris, P. (Eds.), Carbon Nanotubes. Topics in Applied Physics, vol, 80, pp. 287– 329, 2001.
[4] D. Qian., G.J. Wagner., W.K. Liu., M.F. Yu., R.S. Ruoff, “Mechanics of carbon nanotubes”, Appl. Mech. Rev, vol, 55, pp. 495– 533, 2002.
[5] D.W. Brenner., O.A. Shenderova., J.A. Harrison., S.J. Stuart., B. Ni., S.B. Sinnott, “A second-generation reactive empirical bond order (REBO) potential energy expression for hydrocarbons”, J. Phys.- Condens. Matter, vol, 14, pp. 783– 802, 2002.
[6] D.W. Brenner, “Empirical potential for hydrocarbons for use in simulating the chemical vapor deposition of diamond films”, Phys Rev. B, vol, 42, pp. 9458– 9471, 1990.
[7] G.G. Samsonidze., B.I. Yakobson, “Energetics of Stone–Wales defects in deformations of monoatomic hexagonal layers”, Comput. Mater. Sci, vol, 23, pp. 62– 72, 2002.
[8] Y. Huang., J. Wu., K.C. Hwang, “Thickness of
graphene and single-wall carbon nanotubes”, Phys. Rev. B, vol, 74, pp. 245- 413, 2006.
[9] C.Q. Ru, “Axially compressed buckling of a doublewalled carbon nanotube embedded in an elastic medium”, J. Mech. Phys. Solids, vol, 49, pp. 1265– 1279 , 2001.
[10] Z. Tu., Z. Ou-Yang, “Single-walled and multiwalled carbon nanotubes viewed as elastic tubes with the effective Young’s moduli dependent on layer number”, Phys. Rev. B, vol, 65, pp. 233- 407, 2002.
[11] A. Pantano., D.M. Parks., M.C. Boyce, “Mechanics of deformation of single- and multi-wall carbon nanotubes”, J. Mech. Phys. Solids, vol, 52, pp. 789– 821, 2004.
[12] P. Zhang., Y. Huang., H. Gao., K.C. Hwang, “Fracture nucleation in single-wall carbon nanotubes under tension: a continuum analysis incorporating interatomic potentials”, J. Appl. Mech, vol, 69, pp. 454– 458, 2002.
[13] P. Zhang., Y.G. Huang., P.H. Geubelle., K.C. Hwang, “On the continuum modeling of carbon nanotubes”, Acta Mech. Sin, vol, 18, pp. 528– 536, 2002.
[14] P. Zhang., Y. Huang., P.H. Geubelle., P.A. Klein., K.C. Hwan, “The elastic modulus of single-wall carbon nanotubes: a continuum analysis incorporating interatomic potentials”, Int. J. Solids Struct, vol, 39, pp. 3893– 3906, 2002.
[15] H. Jiang., P. Zhang., B. Liu., Y. Huang., P.H. eubelle., H. Gao., K.C. Hwang, “The effect of nanotube radius on the constitutive model for carbon nanotubes”, Comput. Mater. Sci, vol, 28, pp. 429– 442, 2003.
[16] P. Zhang., H. Jiang., Y. Huang., P.H. Geubelle., K.C. Hwang, “An atomistic-based continuum theory for carbon nanotubes: analysis of fracture nucleation”, J. Mech Phys. Solids, vol, 52, pp. 977– 998, 2004.
[17] J. Song., H. Jiang., D.L. Shi., X.Q. Feng., Y. Huang., M.F. Yu., K.C. Hwang., “Stone– Wales transformation: precursor of fracture in carbon nanotubes”, Int. J. Mech. Sci, vol, 48, pp. 1464– 1470, 2006.
[18] H.W. Zhang., K. Cai., L. Wang., “Deformation of single- walled carbon nanotubes under large axial strains”, Mater. Lett, vol, 62, pp. 3940- 3943, 2008.
[19] X. Wang., X. Guo., “Numerical simulation for finite deformation of single-walled carbon nanotubes at finite temperature using temperature-related higher order Cauchy-Born rule based quasi-continuum model”, Compt. Mater. Sci, vol, 55, pp. 273- 283, 2012.
[20] H. Shima., S. Ghosh., M. Arroyo., K. Liboshi., M. Sato., “Thin-shell theory based analysis of radially pressurized multiwall carbon nanotubes”, Compt. Mater. Sci, vol, 52, pp. 90- 94, 2012.
[21] B.J. Cox., J.M. Hill., “Exact and approximate geometric parameters for carbon nanotubes incorporating curvature”, Carbon, vol, 45, pp. 1453, 2007.
[22] Y.C. Fung., “A first course in continuum mechanics”. Englewood Cliffs, N.J., Prentice-Hall, Inc., 1977.
[23] M. Born., K. Huang, “Dynamical Theory of Crystal Lattices”, Oxford University Press, Oxford, 1954.
[24] B.I. Yakobson., C.J. Brabec., J. Bernholc, “Nanomechanics of carbon tubes: instabilities beyond linear response”, Phys. Rev. Lett, vol, 76, pp. 2511– 2514, 1996.
[25] Q. Lu., M. Arroyo.,R, Huang, “Elastic bending modulus of monolayer graphene”, J. Phys. D: Appl. Phys, vol, 42, pp. 102002- 102022, 2009.
[26] K.M. Liew., X.Q. He., C.H. Wong, “On the study of elastic and plastic properties of multi-walled carbon nanotubes under axial tension using molecular dynamics simulation”, Acta Materialia, vol, 52, pp. 2521- 2527, 2004.
[27] J. Wu., K.C. Hwang., Y. Huang., “An atomistic-based finite-deformation shell theory for single-wall carbon nanotubes”, J. Mech. Phys. Solids, vol, 56, pp. 279- 292, 2008.
[28] S. Xiao., W. Hou., “Studies of size effects on carbon nanotubes, mechanical properties by using different potential functions”, Fullerenes, Nanotubes and carbon nanostructures, vol, 14, pp. 9- 16, 2006.