تحلیل عددی و تجربی ارتعاشات آزاد تیر ‌کمانه شده

نوع مقاله : مقاله پژوهشی

نویسندگان

1 کارشناس ارشد مهندسی مکانیک، شرکت آب جنوب شرق خوزستان

2 دانشیار، گروه مکانیک، دانشکده مهندسی، دانشگاه شهید چمران اهواز

چکیده

در این پژوهش ارتعاشات آزاد تیر کمانه‌شده به کمک روش کوادراتور دیفرانسیلی و تحلیل مودال تجربی بررسی شده است. ابتدا معادلات حاکم بر مسئله ارتعاشات تیر کمانه‌شده در مختصات مماسی بدست آمده‌اند. این معادلات یک دستگاه معادلات دیفرانسیلی غیر‌خطی را تشکیل داده که پاسخ آن، مجموع پاسخ‌های استاتیکی و دینامیکی است. به منظور حل دستگاه معادلات دیفرانسیل غیر‌خطی استاتیکی ابتدا معادلات با روش کوادراتور دیفرانسیلی گسسته شده، سپس دستگاه معادلات جبری غیر‌خطی با استفاده از روش طول قوس حل می‌شوند. همچنین با توجه به کوچکتر بودن دامنه حرکت ارتعاشات آزاد تیر نسبت به دامنه حرکت استاتیکی، معادلات ارتعاشی خطی شده‌اند. برای حل دستگاه معادلات دیفرانسیل ارتعاشی خطی شده، معادلات با روش کوادراتور دیفرانسیلی گسسته شده و مقادیر بدست آمده از حل معادلات استاتیکی در دستگاه معادلات گسسته شده دینامیکی جایگذاری شده است. در پایان با حل مسئله مقدار ویژه استاندارد، فرکانس‌های طبیعی و شکل مودهای تیر کمانه‌شده بدست آمده، برای بررسی درستی روش ارائه شده، نتایج حاصل با نتایج بدست آمده از روش اجزاء محدود (به کمک نرم افزار ANSYS) و داده‌های تجربی حاصل از انجام تعدادی آزمایش بر روی تیر کمانه‌شده ساخته شده از پی وی سی مقایسه شدند. نتایج بدست آمده نشان‌دهنده دقت قابل قبول و کارایی روش پیشنهادی است.

کلیدواژه‌ها


عنوان مقاله [English]

Numerical and Experimental Free Vibration Analysis of Post-buckled Beam

نویسندگان [English]

  • Peyman Jamshidi moghadam 1
  • Shapour Moradi 2
چکیده [English]

Vibration analysis of post-buckled beam is investigated in this study. The governing nonlinear equations of motion for the post-buckled state are derived. The solution consists of static and dynamic parts, both leading to nonlinear differential equations. The differential quadrature method has been used to solve the problem. First, it is applied to the equilibrium equations, leading to a nonlinear algebraic system of equations that is solved utilizing an arc length strategy. Next, the differential quadrature is applied to the linearized dynamic differential equations of motion and their corresponding boundary and continuity conditions. Upon solution of the resulting eigenvalue problem, the natural frequencies and mode shapes of the beam are extracted. The investigation includes several numerical as well as experimental case studies on the post-buckled simply supported and clamped-clamped beams. The results show that the applied compressive load as well as the geometric imperfection largely affect the modal shapes and natural frequencies of the beam. Moreover, the study demonstrates the excellent accuracy and efficiency that can be obtained by applying the differential quadrature method to treat vibration of post-buckled beams.

کلیدواژه‌ها [English]

  • Beam vibration
  • Post buckling
  • Differential quadrature method
  • Experimental modal analysis
[1] A. H. Nayfeh; W. Kreider; T.J. Anderson, “Investigation of natural frequencies and mode shapes of buckled
beams”, AIAA J., 33, Vol. 6, pp.1121-1126, 1995.
[2] B. P. Patel; M. Ganapathi; M. Touratier, “Nonlinear free flexural vibrations/post-buckling analysis of laminated
orthotropic beams/columns on a two parameter elastic foundation”, Composite structures, Vol 46, pp. 189-196, 1999.
[3] W. Lestari; S. Hanagud, “Nonlinear vibration of buckled beams: some exact solutions”, J. of solids and
structures, Vol 38, pp. 4741-4757, 2001.
[4] S. T. Santillan; L. N. Virgin; R. H. Plaut, “Post-buckling and vibration of heavy Beam on horizontal or inclined
rigid foundation”, J. of applied mechanics, Vol 73, pp.664-671, 2006.
[5] S. Neukirch; J. Frelat; A. Goriely; C. Maurini,“Vibrations of post-buckled rods: The singular inextensible limit”, J. of Sound and Vibrations,Vol 331, pp. 704-720, 2012.
[6] E. Reissner, “On one-dimensional finite-strain beam theory: the plane problem”, J. of Applied Mathematics
and Physics, Vol 23, pp. 795-804, 1972.
[7] Y. J. Hua; Y. Y. Zhu; C. J. Cheng, “DQEM for large deformation analysis of structures with discontinuity
conditions and initial displacements”, J. of Engineering Structures, Vol 30, pp. 1473-1487, 2008.
[8] C. Shu, Application of differential quadrature and its application in engineering, 1st edition, Verlage London, Springer, 2000.
[9] J. R. Quan; C. T. Chang, “New insights in solving distributed system of equations by quadraturemethod”,
J. of Compute Chem. Engng., Vol 13, pp.1017-1024, 1989.
[10] B.W.R. Forde; S.F. Stiemer, “Improved Arc Length Orthogonality Methods For Nonlinear Finite Element
Analysis”, J. Of Computers & Structures, Vol 27, No.5, pp. 625-630, 1987.
[11] S.N. Al-rasby, “Solution techniques in nonlinear structural analysis”, J. of Computers & Structures, Vol
40, No. 4, 985-993, 1991.
[12] S. Moradi; F. Taheri, “Postbuckling analysis of delaminated composite beams by differential quadrature method”, J. of Composite Structures, Vol 46, pp. 33-39, 1999.