[1] A. H. Nayfeh; W. Kreider; T.J. Anderson, “Investigation of natural frequencies and mode shapes of buckled
beams”, AIAA J., 33, Vol. 6, pp.1121-1126, 1995.
[2] B. P. Patel; M. Ganapathi; M. Touratier, “Nonlinear free flexural vibrations/post-buckling analysis of laminated
orthotropic beams/columns on a two parameter elastic foundation”, Composite structures, Vol 46, pp. 189-196, 1999.
[3] W. Lestari; S. Hanagud, “Nonlinear vibration of buckled beams: some exact solutions”, J. of solids and
structures, Vol 38, pp. 4741-4757, 2001.
[4] S. T. Santillan; L. N. Virgin; R. H. Plaut, “Post-buckling and vibration of heavy Beam on horizontal or inclined
rigid foundation”, J. of applied mechanics, Vol 73, pp.664-671, 2006.
[5] S. Neukirch; J. Frelat; A. Goriely; C. Maurini,“Vibrations of post-buckled rods: The singular inextensible limit”, J. of Sound and Vibrations,Vol 331, pp. 704-720, 2012.
[6] E. Reissner, “On one-dimensional finite-strain beam theory: the plane problem”, J. of Applied Mathematics
and Physics, Vol 23, pp. 795-804, 1972.
[7] Y. J. Hua; Y. Y. Zhu; C. J. Cheng, “DQEM for large deformation analysis of structures with discontinuity
conditions and initial displacements”, J. of Engineering Structures, Vol 30, pp. 1473-1487, 2008.
[8] C. Shu, Application of differential quadrature and its application in engineering, 1st edition, Verlage London, Springer, 2000.
[9] J. R. Quan; C. T. Chang, “New insights in solving distributed system of equations by quadraturemethod”,
J. of Compute Chem. Engng., Vol 13, pp.1017-1024, 1989.
[10] B.W.R. Forde; S.F. Stiemer, “Improved Arc Length Orthogonality Methods For Nonlinear Finite Element
Analysis”, J. Of Computers & Structures, Vol 27, No.5, pp. 625-630, 1987.
[11] S.N. Al-rasby, “Solution techniques in nonlinear structural analysis”, J. of Computers & Structures, Vol
40, No. 4, 985-993, 1991.
[12] S. Moradi; F. Taheri, “Postbuckling analysis of delaminated composite beams by differential quadrature method”, J. of Composite Structures, Vol 46, pp. 33-39, 1999.