Experimental Investigation of Integrated Power System of Dead-End Proton Exchange Membrane Fuel Cell H2/O2 Stack with Large Active Area and Internal Humidifier

Document Type : Research Article

Authors

1 Malek Ashtar University of Technology, Fuel Cell Research Laboratory

2 Malek Ashtar University of Technology, Tehran, Iran

3 Fuel Cell Technology Research Laboratory, Malek Ashtar University of Technology, Fereydounkenar, Iran.

4 Fuel Cell Technology Research Laboratory, Malek Ashtar University of Technology

Abstract

Proton exchange membrane fuel cells with a dead-ended anode and cathode can obtain high hydrogen and oxygen utilization by a comparatively simple system. Accumulation of the water in the anode and cathode channels can lead to local fuel starvation, which degrades the performance of fuel cell. In this paper, for the first time, a new design for proton exchange membrane fuel-cell stack is presented that can achieve higher fuel utilization without using fuel recirculation devices that consume parasitic power. Unified humidifier is another novelty that is applied for the first time. The basic concept of the design is to divide the anodic cells of a stack into two blocks by conducting the outlet gas of each stage to a separator and reentering to next stage, thereby constructing a multistage anode and cathode. In this design, higher gaseous flow rate is maintained at the outlet of the cells, even under dead-end conditions, and this results in a reduction of purge-gas emissions by hindering the accumulation of liquid water in the cells. The result shows that with this new design the dead-end mode has the same performance as open-end mode. All performance tests were carried out at an integrated power system.

Keywords

Main Subjects


[1] Z. Wan, J. Wan, J. Liu, Z. Tu, M. Pan, Z. Liu, W. Liu, Water recovery and air humidification by condensing the moisture in the outlet gas of a proton exchange membrane fuel cell stack, Applied Thermal Engineering, 42 (2012) 173-178.
[2] K. Li, G. Ye, J. Pan, H. Zhang, M. Pan, Self-assembled Nafion®/metal oxide nanoparticles hybrid proton exchange membranes, Journal of Membrane Science, 347(1-2) (2010) 26-31.
[3] S.-D. Oh, K.-Y. Kim, S.-B. Oh, H.-Y. Kwak, Optimal operation of a 1-kW PEMFC-based CHP system for residential applications, Applied Energy, 95 (2012) 93-101.
[4] W.R. Baumgartner, P. Parz, S. Fraser, E. Wallnöfer, V. Hacker, Polarization study of a PEMFC with four reference electrodes at hydrogen starvation conditions, Journal of Power Sources, 182(2) (2008) 413-421.
[5] N. Yousfi-Steiner, P. Moçotéguy, D. Candusso, D. Hissel, A review on polymer electrolyte membrane fuel cell catalyst degradation and starvation issues: Causes, consequences and diagnostic for mitigation, Journal of Power Sources, 194(1) (2009) 130-145.
[6] S. Zhang, X. Yuan, H. Wang, W. Mérida, H. Zhu, J. Shen, S. Wu, J. Zhang, A review of accelerated stress tests of MEA durability in PEM fuel cells, International journal of hydrogen energy, 34(1) (2009) 388-404.
[7] D. Liang, Q. Shen, M. Hou, Z. Shao, B. Yi, Study of the cell reversal process of large area proton exchange membrane fuel cells under fuel starvation, Journal of Power Sources, 194(2) (2009) 847-853.
[8] H. Li, Y. Tang, Z. Wang, Z. Shi, S. Wu, D. Song, J. Zhang, K. Fatih, J. Zhang, H. Wang, A review of water flooding issues in the proton exchange membrane fuel cell, Journal of Power Sources, 178(1) (2008) 103-117.
[9] Y. Hou, C. Shen, D. Hao, Y. Liu, H. Wang, A dynamic model for hydrogen consumption of fuel cell stacks considering the effects of hydrogen purge operation, Renewable energy, 62 (2014) 672-678.
[10] Y.-S. Chen, C.-W. Yang, J.-Y. Lee, Implementation and evaluation for anode purging of a fuel cell based on nitrogen concentration, Applied energy, 113 (2014) 1519-1524.
[11] B. Belvedere, M. Bianchi, A. Borghetti, A. De Pascale, M. Paolone, R. Vecci, Experimental analysis of a PEM fuel cell performance at variable load with anodic exhaust management optimization, international journal of hydrogen energy, 38(1) (2013) 385-393.
[12] J.-J. Hwang, Effect of hydrogen delivery schemes on fuel cell efficiency, Journal of Power Sources, 239 (2013) 54-63.
[13] S.-K. Park, S.-Y. Choe, Dynamic modeling and analysis of a 20-cell PEM fuel cell stack considering temperature and two-phase effects, Journal of Power Sources, 179(2) (2008) 660-672.
[14] I.-S. Han, J. Jeong, H.K. Shin, PEM fuel-cell stack design for improved fuel utilization, International Journal of Hydrogen Energy, 38(27) (2013) 11996-12006.
[15] I.-S. Han, B.-K. Kho, S. Cho, Development of a polymer electrolyte membrane fuel cell stack for an underwater vehicle, Journal of Power Sources, 304 (2016) 244-254.
[16] B. Chen, Z. Tu, S.H. Chan, Performance degradation and recovery characteristics during gas purging in a proton exchange membrane fuel cell with a dead-ended anode, Applied Thermal Engineering, 129 (2018) 968-978.
[17] Q. Jian, L. Luo, B. Huang, J. Zhao, S. Cao, Z. Huang, Experimental study on the purge process of a proton exchange membrane fuel cell stack with a dead-end anode, Applied Thermal Engineering, 142 (2018) 203-214.
[18] M.M. Barzegari, S.M. Rahgoshay, L. Mohammadpour, D. Toghraie, Performance prediction and analysis of a dead-end PEMFC stack using data-driven dynamic model, Energy, 188 (2019) 116049.
[19] F. Barbir, PEM fuel cells: theory and practice, Academic Press, 2012.