بررسی رشد ترک خستگی با فرایند وینر با درنظرگرفتن اثرات تصادفی

نوع مقاله : مقاله پژوهشی

نویسندگان

1 پژوهشگاه هوافضا- وزارت علوم، تحقیقات و فناوری

2 مهندسی هوافضا، پژوهشگاه هوافضا، وزارت علوم تحقیقات و فناوری، تهران، ایران

چکیده

ارزیابی قابلیت اطمینان سازه‌های هوافضایی با قابلیت تعمیرپذیری، برای افزایش در دسترس‌بودن سیستم و کاهش توقفات تصادفی در طول بهره‌برداری از اهمیت بالایی برخوردار می‌باشد. مدل‌سازی و تحلیل فرآیند تخریب، یک رویکرد موثر برای ارزیابی قابلیت‌اطمینان و پیش‌بینی عمر مفید باقی‌مانده است. مدل‌سازی فرآیند تخریب براساس روش‌های مبتنی بر داده (فرآیندهای تصادفی و روش‏های یادگیری ماشین) یا مکانیزم‌های خرابی انجام می‌شود. مدل‌های مبتنی برفرآیندهای تصادفی نظیر فرآیند وینر یکی از ابزارهای توانمند در این حوزه به ویژه تحلیل گسترش آسیب و رشد ترک‏های خستگی است. در این تحقیق، ابتدا فرایندهای وینر برای مدل‌سازی فرایند تخریب تشریح‌شده و خطاهای اندازه‌گیری با اثرات تصادفی در مدل مورد بررسی قرار می‏گیرد و علاوه بر این، عبارات فرم بسته برخی مقادیر قابلیت‌اطمینان مانند تابع قابلیت اطمینان و تابع چگالی احتمال هریک از مدل‌ها ارائه شده است. سپس با استفاده از روش تخمین درست‌نمایی بیشینه و الگوریتم  امید ریاضی- بیشینه‌کردن، پارامترهای ناشناخته در مدل‌های تخریب برآورد می‏شود. برای اثبات دقت و صحت روش ارائه‌شده، گسترش ترک ناشی از خستگی در یک قطعه آلومینیومی بررسی شده و نتایج با مقادیر تجربی و  مدل پایه گاما مقایسه شده است. نتایج به‌دست‌آمده بیانگر دقت مطلوب مدل فرایند وینر نسبت به مدل گاما در تخمین رشد ترک خستگی است و با اضافه‌کردن پارامتر خطای اندازه‌گیری به این مدل، دقت آن افزایش می‌یابد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Fatigue crack growth analysis via Wiener degradation model with random effects

نویسندگان [English]

  • Mohammad Ali Farsi 1
  • Peyman Gholami 2
1 ARI
2 Aerospace Research Institute (Ministry of Science, Research and Technology), Tehran, Iran.
چکیده [English]

Aerospace structure reliability is analyzed to increase the availability and decrease the stochastic failures of the system. A degradation-based modeling method is an effective approach for reliability assessment. Degradation models are usually developed based on degradation data or understandings of physics behind the degradation processes of products or systems. Stochastic models such as the Wiener process are one of the powerful tools in this field, especially the analysis of damage expansion and fatigue crack growth. This study presents a survey of degradation modeling approaches with consideration of random effects frequently used in engineering programs. Firstly, Wiener processes are used to model the degradation process of the product, which considers measurement errors simultaneously with random effects. Moreover, the closed-form expressions of some reliability quantities such as the probability density function are derived. Then, the maximum likelihood estimation method based on the expectation-maximation algorithm is presented to estimate the unknown parameters in the degradation models. Finally, a practical case study of fatigue crack growth using proposed models is provided and compared with the basic Gamma process to demonstrate the superiority and effectiveness of the Wiener process. It is shown that the Wiener process model estimates fatigue crack growth path better than the Gamma model and by adding the measurement error parameter to the model, its accuracy is increased.

کلیدواژه‌ها [English]

  • Wiener processes
  • Random effects
  • Measurement errors
  • Gamma process
  • Fatigue
[1] X.-S. Si, W. Wang, C.-H. Hu, D.-H. Zhou, Remaining useful life estimation–a review on the statistical data driven approaches, European Journal of Operational Research, 213(1) (2011) 1-14.
[2] Z. Zhang, X. Si, C. Hu, X. Kong, Degradation modeling–based remaining useful life estimation: A review on approaches for systems with heterogeneity, Proceedings of the Institution of Mechanical Engineers, Part O: Journal of Risk and Reliability, 229(4) (2015) 343-355.
[3] Z.-S. Ye, N. Chen, Y. Shen, A new class of Wiener process models for degradation analysis, Reliability Engineering & System Safety, 139 (2015) 58-67.
[4] X.-S. Si, W. Wang, C.-H. Hu, D.-H. Zhou, M.G. Pecht, Remaining useful life estimation based on a nonlinear diffusion degradation process, IEEE Transactions on Reliability, 61(1) (2012) 50-67.
[5] C. Park, W.J. Padgett, New cumulative damage models for failure using stochastic processes as initial damage, IEEE Transactions on Reliability, 54(3) (2005) 530-540.
[6] S. Mishra, O.A. Vanli, Remaining useful life estimation with lamb-wave sensors based on wiener process and principal components regression, Journal of Nondestructive Evaluation, 35(1) (2016) 11.
[7] Z. Omar, B. hmida Faycel, M.M. Hedi, C. Abdelkader, Stochastic Modeling of Wear in Bearing in Motor Pump in Two–Tank System, in:  2018 15th International Multi-Conference on Systems, Signals & Devices (SSD), IEEE, 2018, pp. 611-618.
[8] X. Zhuang, T. Yu, L. Shen, Z. Sun, B. Guo, Time-varying dependence research on wear of revolute joints and reliability evaluation of a lock mechanism, Engineering Failure Analysis, 96 (2019) 543-561.
[9] W. Wu, C. Ni, A study of stochastic fatigue crack growth modeling through experimental data, Probabilistic Engineering Mechanics, 18(2) (2003) 107-118.
[10] A. Xu, S. Zhou, Y. Tang, A Unified Model for System Reliability Evaluation Under Dynamic Operating Conditions, IEEE Transactions on Reliability,  (2019).
[11] Z.S. Ye, M. Xie, Stochastic modelling and analysis of degradation for highly reliable products, Applied Stochastic Models in Business and Industry, 31(1) (2015) 16-32.
[12] W. Kahle, S. Mercier, C. Paroissin, Degradation processes in reliability, John Wiley & Sons, 2016.
[13] X. Wang, Wiener processes with random effects for degradation data, Journal of Multivariate Analysis, 101(2) (2010) 340-351.
[14] G. Whitmore, Estimating degradation by a Wiener diffusion process subject to measurement error, Lifetime Data Analysis, 1(3) (1995) 307-319.
[15] X. Wang, N. Balakrishnan, B. Guo, Residual life estimation based on a generalized Wiener degradation process, Reliability Engineering & System Safety, 124 (2014) 13-23.
[16] Z.-S. Ye, Y. Wang, K.-L. Tsui, M. Pecht, Degradation data analysis using Wiener processes with measurement errors, IEEE Transactions on Reliability, 62(4) (2013) 772-780.
[17] D. Pan, Y. Wei, H. Fang, W. Yang, A reliability estimation approach via Wiener degradation model with measurement errors, Applied Mathematics and Computation, 320 (2018) 131-141.
[18] C.-Y. Peng, S.-T. Tseng, Mis-specification analysis of linear degradation models, IEEE Transactions on Reliability, 58(3) (2009) 444-455.
[19] M. Abdel-Hameed, A gamma wear process, IEEE transactions on Reliability, 24(2) (1975) 152-153.
[20] A. Grall, C. Bérenguer, L. Dieulle, A condition-based maintenance policy for stochastically deteriorating systems, Reliability Engineering & System Safety, 76(2) (2002) 167-180.
[21] J. Lawless, M. Crowder, Covariates and random effects in a gamma process model with application to degradation and failure, Lifetime Data Analysis, 10(3) (2004) 213-227.
[22] D.-G. Chen, Y. Lio, H.K.T. Ng, T.-R. Tsai, Statistical modeling for degradation data, Springer, 2017.