[1] R.M. Rogers, Applied mathematics in integrated navigation systems, American Institute of Aeronautics and Astronautics, 2007.
[2] R.M. Rogers, Applied mathematics in integrated navigation systems. American Institute of Aeronautics and Astronautics, Inc., Reston, Virginia, USA, (2003).
[3] D. Titterton, J.L. Weston, J. Weston, Strapdown inertial navigation technology, IET, 2004.
[4] N. El-Sheimy, S. Nassar, A. Noureldin, Wavelet de-noising for IMU alignment, IEEE Aerospace and Electronic Systems Magazine, 19(10) (2004) 32-39.
[5] R. Kalman, A new approach to linear filtering and prediction theory, Trans. ASME, J. Basic Eng., 83 (1961) 95-108.
[6] J. Li, N. Song, G. Yang, R. Jiang, Fuzzy adaptive strong tracking scaled unscented Kalman filter for initial alignment of large misalignment angles, Review of Scientific Instruments, 87(7) (2016) 075118.
[7] Y. Zhang, L. Luo, T. Fang, N. Li, G. Wang, An improved coarse alignment algorithm for odometer-aided sins based on the optimization design method, Sensors, 18(1) (2018) 195.
[8] J.G. Park, J.G. Lee, C.G. Park, SDINS/GPS in-flight alignment using GPS carrier phase rate, GPS Solutions, 8(2) (2004) 74-81.
[9] S. Han, J. Wang, A novel initial alignment scheme for low-cost INS aided by GPS for land vehicle applications, The Journal of Navigation, 63(4) (2010) 663-680.
[10] F. Jiancheng, Y. Sheng, Study on innovation adaptive EKF for in-flight alignment of airborne POS, IEEE Transactions on Instrumentation and Measurement, 60(4) (2011) 1378-1388.
[11] D. Gu, N. El-Sheimy, T. Hassan, Z. Syed, Coarse alignment for marine SINS using gravity in the inertial frame as a reference, in: 2008 IEEE/ION Position, Location and Navigation Symposium, IEEE, 2008, pp. 961-965.
[12] P.M. Silson, Coarse alignment of a ship's strapdown inertial attitude reference system using velocity loci, IEEE Transactions on Instrumentation and Measurement, 60(6) (2011) 1930-1941.
[13] K. Taizhong, F. Jiancheng, W. Wei, Quaternion-optimization-based in-flight alignment approach for airborne POS, IEEE Transactions on Instrumentation and Measurement, 61(11) (2012) 2916-2923.
[14] J. Li, J. Xu, L. Chang, F. Zha, An improved optimal method for initial alignment, The Journal of Navigation, 67(4) (2014) 727-736.
[15] Y. Wu, X. Pan, Velocity/position integration formula part I: Application to in-flight coarse alignment, IEEE Transactions on Aerospace and Electronic Systems, 49(2) (2013) 1006-1023.
[16] L. Chang, J. Li, S. Chen, Initial alignment by attitude estimation for strapdown inertial navigation systems, IEEE Transactions on Instrumentation and Measurement, 64(3) (2014) 784-794.
[17] G. Cheng, S. Cao, L. Guo, W. Chen, Initial alignment of Inertial Navigation System based on a predictive iterated Kalman filter, in: 2018 37th Chinese Control Conference (CCC), IEEE, 2018, pp. 4655-4660.
[18] X. Xu, J. Lu, T. Zhang, A Fast-Initial Alignment Method With Angular Rate Aiding Based on Robust Kalman Filter, IEEE Access, 7 (2019) 51369-51378.
[19] W. Li, W. Wu, J. Wang, L. Lu, A fast SINS initial alignment scheme for underwater vehicle applications, The Journal of Navigation, 66(2) (2013) 181-198.
[20] Z. Chuanbin, T. Weifeng, J. Zhihua, A novel method improving the alignment accuracy of a strapdown inertial navigation system on a stationary base, Measurement Science and Technology, 15(4) (2004) 765.
[21] X. Wang, Fast alignment and calibration algorithms for inertial navigation system, Aerospace Science and Technology, 13(4-5) (2009) 204-209.
[22] Y. Huang, Y. Zhang, X. Wang, Kalman-filtering-based in-motion coarse alignment for odometer-aided SINS, IEEE Transactions on instrumentation and measurement, 66(12) (2017) 3364-3377.
[23] T. Du, L. Guo, J. Yang, A fast initial alignment for SINS based on disturbance observer and Kalman filter, Transactions of the Institute of Measurement and Control, 38(10) (2016) 1261-1269.
[24] M. Hou, R. Patton, Optimal filtering for systems with unknown inputs, IEEE transactions on Automatic Control, 43(3) (1998) 445-449.
[25] Y. Cheng, H. Ye, Y. Wang, D. Zhou, Unbiased minimum-variance state estimation for linear systems with unknown input, Automatica, 45(2) (2009) 485-491.
[26] J. NASH, R, J. D'APPOLITO, K. ROY, Error analysis of hybrid aircraft inertial navigation systems, in: Guidance and Control Conference, 1972, pp. 848.
[27] F.J. Bejarano, L. Fridman, High order sliding mode observer for linear systems with unbounded unknown inputs, International Journal of Control, 83(9) (2010) 1920-1929.
[28] K.R. Britting, Inertial navigation systems analysis, (1971).
[29] C. Broxmeyer, C. Leondes, Inertial navigation systems, in, American Society of Mechanical Engineers Digital Collection, 1964.
[30] I. Guidance, GR Pitman, Jr., Ed, in, John Wiley & Sons, Inc., New York, 1962.
[31] C.T. Leondes, Guidance and control of aerospace vehicles, McGraw-Hill New York, 1963.
[32] D.O. Benson, A comparison of two approaches to pure-inertial and Doppler-inertial error analysis, IEEE Transactions on Aerospace and Electronic Systems, (4) (1975) 447-455.
[33] J.A. D'Appolito, The evaluation of Kalman filter designs for multisensor integrated navigation systems, Air Force Avionics Laboratory, 1971.
[34] C. Hutchinson, H. Wondergem, An error analysis technique for inertial navigation systems and Kalman filters, MASSACHUSETTS UNIV AMHERST SCHOOL OF ENGINEERING, 1968.
[35] A. Yavnai, I.Y. Bar-Itzhack, Self-contained updating of ground inertial navigation system, Israel Journal of Technology, 18 (1980) 304-313.
[36] L. Fridman, A. Levant, J. Davila, High-order sliding modes observer for linear systems with unbounded unknown inputs, IFAC Proceedings Volumes, 42(17) (2009) 216-221.
[37] F.J. Bejarano, L. Fridman, Unbounded unknown inputs estimation based on high-order sliding mode differentiator, in: Proceedings of the 48h IEEE Conference on Decision and Control (CDC) held jointly with 2009 28th Chinese Control Conference, IEEE, 2009, pp. 8393-8398.
[38] H.L. Trentelman, A.A. Stoorvogel, M. Hautus, Control theory for linear systems, Springer Science & Business Media, 2012.
[39] B. Molinari, A strong controllability and observability in linear multivariable control, IEEE Transactions on Automatic Control, 21(5) (1976) 761-764.
[40] A. Levant, Higher-order sliding modes, differentiation and output-feedback control, International journal of Control, 76(9-10) (2003) 924-941.