مدل‌سازی تحلیلی سرعت زاویه‌ای حد الاستیک در دیسک دوار مدرج تابعی تحت شرایط بارگذاری مکانیکی- حرارتی

نوع مقاله : مقاله پژوهشی

نویسنده

مهندسی مکانیک، دانشکده فنی و مهندسی، دانشگاه بجنورد، بجنورد، ایران

چکیده

تنش‌های حرارتی ناشی از تغییرات دمایی به همراه سرعت زاویه‌ای بالا در دیسک‌های دوار صنعتی مقاومت ماده سازنده دیسک را کاهش خواهد داد. بنابراین آنالیز دیسک‌های دوار تحت بارگذاری‌های حرارتی- مکانیکی و تخمین سرعت زاویه‌ای حد به عنوان معیاری برای آغاز تغییر‌شکل‌های پلاستیک مهم می‌باشد. در این مقاله مدل‌سازی تحلیلی برای آنالیز ترموالاستیک دیسک‌های دوار مدرج تابعی با متغیر درنظرگرفتن تمامی خواص هندسی و مکانیکی در راستای شعاعی دیسک انجام خواهد شد. روش هموتوپی پرتوربیشن به عنوان یک روش تحلیلی برای حل معادلات به کار برده می‌شود. نتایج با روش عددی تفاضلات محدود و هم چنین داده‌های مراجع راستی‌آزمایی می‌گردند. با آنالیز عددی تاثیر پارامتر تغییر ضخامت، نوع بارگذاری حرارتی و شرایط مرزی بر سرعت زاویه‌ای حدی و شعاع شروع تغییر‌شکل‌های پلاستیک بررسی خواهد شد. از مدل تامورا- توموتا-اوزاوا برای محاسبه تنش تسلیم در شعاع‌های مختلف دیسک مدرج تابعی استفاده می‌شود و نحوه وابستگی آن به پارامترهای موجود در مدل سازی تحلیلی به عنوان نتیجه ارائه خواهد شد. در نهایت نشان داده شد که با گرادیان دمایی مناسب در سطح خارجی دیسک به عنوان شرط مرزی، می‌توان سطح تنش‌های حرارتی را کنترل کرد و در مقایسه با شرط مرزی حرارتی ثابت سطح تنش را تا 20 % کاهش داد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Analytical modeling of elastic limit angular velocity in a rotating disk of a functionally graded material under mechanical-thermal loading conditions

نویسنده [English]

  • sanaz jafari
Machanical engineering department, Faculty of Engineering, University of Bojnord, Bojnord, iran
چکیده [English]

Thermal stresses caused by temperature changes, along with high angular velocities in industrial rotating disks will reduce the strength of the disk material. Therefore, analysis of rotating disks under thermal-mechanical loads and estimation of the elastic limit angular velocity have particular importance as a criterion of the initiation of plastic deformation. In this paper, analytical modeling for thermoelastic analysis of functionally graded rotating disks is performed by considering the variations of all the geometric and mechanical properties of the rotating disk in a radial direction. The homotopy perturbation method is used as an analytical method to solve equations. The results are verified by the finite difference method and the data in the references. Numerical analysis is performed to investigate the influence of thickness parameter, thermal loading type and boundary conditions on the limit angular velocity and the radius of initiation of the plastic deformation. The Tamura-Tomota-Ozawa model is used to calculate yield stress at different radius of functionally graded disk. Finally, it is shown that by defining the appropriate temperature gradient on the outer surface as a boundary condition, the level of thermal stresses can be controlled and reduced up to 20% compared to the constant thermal boundary condition.
 

کلیدواژه‌ها [English]

  • Rotating disk
  • Functionally graded material
  • Homotopy Perturbation Method
  • Yield Stress
  • Limit angular velocity
[1] U. Gamer, Tresca’s yield condition and the rotating solid disk, Journal of Applied Mechanics, 50 (1983) 676–8.
[2] A. N. Eraslan, Y. Orcan, Elastoplastic analysis of nonlinearly hardening variable thickness annular disks under external pressure, Mechanics Research Communications, 32 (2005) 306–315.
[3] A. N. Eraslan, Elastic–plastic deformations of rotating variable thickness annular disks with free, pressurized and radially constrained boundary conditions, International Journal of Mechanical Sciences, 45 (2003) 643–667.
[4] L. H. You, X. Y. You, J. J. Zhang, J. Li, On rotating circular disks with varying material properties, The journal of applied mathe,atics and physics, 58 (2007) 1068–84.
[5] S. A. H. Kordkheili, R. Naghdabadi, Thermoelastic analysis of a functionally graded rotating disk, Composite Structure, 79 (2007) 508–16.
[6] M. Bayat, M. Saleem, B. B. Sahari, A. M. S. Hamouda, E. Mahdi, Mechanical and thermal stresses in a functionally graded rotating disk with variable thickness due to radially symmetry loads, International journal of pressure vessel and piping, 86 (2009) 357–72.
[7] M. H. Hojjati, S. Jafari, Semi exact solution of elastic non-uniform thickness and density rotating disks by homotopy perturbation and Adomian’s decomposition methods Part I: Elastic Solution, International journal of pressure vessel and piping, 85 (2008) 871-8.
[8] M. H. Hojjati, S. Jafari, Semi-exact solution of non-uniform thickness and density rotating disks Part II: Elastic-strain hardening solution, International journal of pressure vessel and piping, 86 (2009) 307-318.
[9] R. Akbari Alashti, S. Jafari, S. J. Hosseinipour, Experimental and numerical investigation of ductile damage effect on load bearing capacity of a dented API XB pipe subjected to internal pressure, Engineering Failure Analysis, 47 (2015) 208–228.
[10] L. Sondhi, A. K. Thawait, S. Sanyal, S. Bhowmick, Stress and deformation analysis of functionally graded varying thickness profile orthotropic rotating disk, Materials Today: Proceedings, In Press, Corrected Proof, Available online 6 April 2020.
[11] M. Hosseini, M. Shishesaz, K. N. Tahan , A. Hadi, Stress analysis of rotating nano-disks of variable thickness made of functionally graded materials , International Journal of Engineering Science, 109 (2016) 29–53.
[12] A. N. Eraslan, A Class of Nonisothermal Variable Thickness Rotating Disk Problems Solved by Hypergeometric Functions,Turkish journal of engineering envirmental sciences, 29 (2005) 241-269.
[13] T. Dai, H.  Dai, H, Thermo-elastic analysis of a functionally graded rotating hollow circular disk with variable thickness and angular speed,Applied Mathematical Modelling, 40 (2016) 7689-7707.
[14] X. Peng, X. Li, Thermal stress in rotating functionally graded hollow circular disks, Composite Structures, 92 (2010) 1896–1904.
[15] A. M. Afsar, J. Go, Finite element analysis of thermoelastic field in a rotating FGM circular disk, Applied Mathematical Modeling, 34 (2010) 3309–3320.
[16] P. Nayak, S. Bhowmick, K. N. Saha, Elasto-plastic analysis of thermo-mechanically loaded functionally graded disks by an iterative variational method, Engineering Science and Technology, an International Journal, 23 (2020) 42-64.
[17] H. Zharfi, H. Ekhteraei Toussi, Creep analysis of FGM rotating disc with GDQ method, Journal of theoretical and applied mchanics, 55 (2017) 331-341.
[20] A. C. Ugural, Saul K. Fenster, Advanced strength and applied elasticity, American Elsevier Publication Company, (1975).
[21] G. H. Paulino, Z. H.  Jin, R. Dodds, Failure of functionally graded materials, Refrence module in materials science and material engineering, (2017).
[22] R. Williams, B. Rabin, J. Drake, Finite element analysis of thermal residual stresses at graded ceramicmetal interfaces, Part I. Model description and geometrical effects, Journal of Applied Physics, 74 (1993)1310-1320.
[23] J. H. He, Homotopy perturbation technique, Computational Methods Applied Mechanical Engineering, 178 (1999)257–62.
[24] J. H. He, Homotopy perturbation method: a new nonlinear analytical technique, Applied Mathematical Computation, 135 (2003) 73–80.
[25] J. H. He, Asymptotology by homotopy perturbation method, Applied Mathematical Computation, 6 (2004) 156-591.
[26] J. H. He, Limit cycle and bifurcation of nonlinear problems, Chaos Solitons Fractals, 26 (2005) 827–33.
[27] J. H. He, Homotopy perturbation method for bifurcation of nonlinear problems, International Journal Nonlinear Science Numerical Simulations, 6 (2005) 207–8.
[28] S. Nakmura, Applied Numerical methods with software, Prentice-Hall international Inc, 1991.
[29] K. Ashok, K., Singh, B. S. Bhadauria, Finite Difference Formulae for Unequal Sub-Intervals Using Lagrange’s Interpolation Formula, International Journal of Mathematic Analysis, 3 (2009) 815 – 827.