[1] U. Gamer, Tresca’s yield condition and the rotating solid disk, Journal of Applied Mechanics, 50 (1983) 676–8.
[2] A. N. Eraslan, Y. Orcan, Elastoplastic analysis of nonlinearly hardening variable thickness annular disks under external pressure, Mechanics Research Communications, 32 (2005) 306–315.
[3] A. N. Eraslan, Elastic–plastic deformations of rotating variable thickness annular disks with free, pressurized and radially constrained boundary conditions, International Journal of Mechanical Sciences, 45 (2003) 643–667.
[4] L. H. You, X. Y. You, J. J. Zhang, J. Li, On rotating circular disks with varying material properties, The journal of applied mathe,atics and physics, 58 (2007) 1068–84.
[5] S. A. H. Kordkheili, R. Naghdabadi, Thermoelastic analysis of a functionally graded rotating disk, Composite Structure, 79 (2007) 508–16.
[6] M. Bayat, M. Saleem, B. B. Sahari, A. M. S. Hamouda, E. Mahdi, Mechanical and thermal stresses in a functionally graded rotating disk with variable thickness due to radially symmetry loads, International journal of pressure vessel and piping, 86 (2009) 357–72.
[7] M. H. Hojjati, S. Jafari, Semi exact solution of elastic non-uniform thickness and density rotating disks by homotopy perturbation and Adomian’s decomposition methods Part I: Elastic Solution, International journal of pressure vessel and piping, 85 (2008) 871-8.
[8] M. H. Hojjati, S. Jafari, Semi-exact solution of non-uniform thickness and density rotating disks Part II: Elastic-strain hardening solution, International journal of pressure vessel and piping, 86 (2009) 307-318.
[9] R. Akbari Alashti, S. Jafari, S. J. Hosseinipour, Experimental and numerical investigation of ductile damage effect on load bearing capacity of a dented API XB pipe subjected to internal pressure, Engineering Failure Analysis, 47 (2015) 208–228.
[10] L. Sondhi, A. K. Thawait, S. Sanyal, S. Bhowmick, Stress and deformation analysis of functionally graded varying thickness profile orthotropic rotating disk, Materials Today: Proceedings,
In Press, Corrected Proof, Available online 6 April 2020.
[11] M. Hosseini, M. Shishesaz, K. N. Tahan , A. Hadi, Stress analysis of rotating nano-disks of variable thickness made of functionally graded materials , International Journal of Engineering Science, 109 (2016) 29–53.
[12] A. N. Eraslan, A Class of Nonisothermal Variable Thickness Rotating Disk Problems Solved by Hypergeometric Functions,Turkish journal of engineering envirmental sciences, 29 (2005) 241-269.
[13] T. Dai, H. Dai, H, Thermo-elastic analysis of a functionally graded rotating hollow circular disk with variable thickness and angular speed,Applied Mathematical Modelling, 40 (2016) 7689-7707.
[14] X. Peng, X. Li, Thermal stress in rotating functionally graded hollow circular disks, Composite Structures, 92 (2010) 1896–1904.
[15] A. M. Afsar, J. Go, Finite element analysis of thermoelastic field in a rotating FGM circular disk, Applied Mathematical Modeling, 34 (2010) 3309–3320.
[16] P. Nayak, S. Bhowmick, K. N. Saha, Elasto-plastic analysis of thermo-mechanically loaded functionally graded disks by an iterative variational method, Engineering Science and Technology, an International Journal, 23 (2020) 42-64.
[17] H. Zharfi, H. Ekhteraei Toussi, Creep analysis of FGM rotating disc with GDQ method, Journal of theoretical and applied mchanics, 55 (2017) 331-341.
[21] G. H. Paulino, Z. H. Jin, R. Dodds, Failure of functionally graded materials, Refrence module in materials science and material engineering, (2017).
[22] R. Williams, B. Rabin, J. Drake, Finite element analysis of thermal residual stresses at graded ceramicmetal interfaces, Part I. Model description and geometrical effects, Journal of Applied Physics, 74 (1993)1310-1320.
[23] J. H. He, Homotopy perturbation technique, Computational Methods Applied Mechanical Engineering, 178 (1999)257–62.
[24] J. H. He, Homotopy perturbation method: a new nonlinear analytical technique, Applied Mathematical Computation, 135 (2003) 73–80.
[25] J. H. He, Asymptotology by homotopy perturbation method, Applied Mathematical Computation, 6 (2004) 156-591.
[26] J. H. He, Limit cycle and bifurcation of nonlinear problems, Chaos Solitons Fractals, 26 (2005) 827–33.
[27] J. H. He, Homotopy perturbation method for bifurcation of nonlinear problems, International Journal Nonlinear Science Numerical Simulations, 6 (2005) 207–8.
[28] S. Nakmura, Applied Numerical methods with software, Prentice-Hall international Inc, 1991.
[29] K. Ashok, K., Singh, B. S. Bhadauria, Finite Difference Formulae for Unequal Sub-Intervals Using Lagrange’s Interpolation Formula, International Journal of Mathematic Analysis, 3 (2009) 815 – 827.